HMM学习最佳范例系列大概翻译于10年前,是52nlp上早期访问量较高的一批文章,这里提供一个全文PDF下载,关注AINLP公众号,回复'HMM'获取网盘链接:
另外将博客上的隐马尔可夫模型相关文章做个索引,仅供参考:
HMM学习最佳范例
HMM相关文章
HMM应用
HMM学习最佳范例系列大概翻译于10年前,是52nlp上早期访问量较高的一批文章,这里提供一个全文PDF下载,关注AINLP公众号,回复'HMM'获取网盘链接:
另外将博客上的隐马尔可夫模型相关文章做个索引,仅供参考:
HMM学习最佳范例
HMM相关文章
HMM应用
HMM系列文章是52nlp上访问量较高的一批文章,这里做个索引,方便大家参考。
HMM学习
HMM相关
HMM应用
PRML读书会第十三章 Sequential Data
主讲人 张巍
(新浪微博: @张巍_ISCAS)
软件所-张巍<zh3f@qq.com> 19:01:27
我们开始吧,十三章是2018免费送彩金游戏序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模:
例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模:
但这样并不能完全解决问题 :1、高阶马尔科夫模型参数太多;2、数据间的相关性仍然受阶数限制。一个好的解决方法,是引入一层隐变量,建立如下的模型:
继续阅读
PRML读书会第十一章 Sampling Methods
主讲人 网络上的尼采
(新浪微博: @Nietzsche_复杂网络机器学习)
网络上的尼采(813394698) 9:05:00
今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo。
上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化问题,好处在于求解过程中可以推出精致的解析解。变分是从最优化的角度通过坐标上升法收敛到局部最优,这一章我们将通过计算从动力学角度见证Markov Chain Monte Carlo收敛到平稳分布。
先说sampling的原因,因为统计学中经常会遇到对复杂的分布做加和与积分,这往往是intractable的。MCMC方法出现后贝叶斯方法才得以发展,因为在那之前对不可观测变量(包括隐变量和参数)后验分布积分非常困难,对于这个问题上一章变分用的解决办法是通过最优化方法寻找一个和不可观测变量后验分布p(Z|X)近似的分布,这一章我们看下sampling的解决方法,举个简单的例子:比如我们遇到这种形式,z是个连续随机变量,p(z)是它的分布,我们求f(z)的期望。如果我们从p(z)中sampling一个数据集z(l),然后再求个平均
来近似f(z)的期望,so,问题就解决了,关键是如何从p(z)中做无偏的sampling。
为了说明sampling的作用,我们先举个EM的例子,最大似然计算中求分布的积分问题,我们在第九章提到了,完整数据的log似然函数是对隐变量Z的积分:
继续阅读
PRML读书会第八章 Graphical Models
主讲人 网神
(新浪微博: @豆角茄子麻酱凉面)
网神(66707180) 18:52:10
今天的内容主要是:
1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示;2.图的概率推断inference。
图模型是用图的方式表示概率推理 ,将概率模型可视化,方便展示变量之间的关系,概率图分为有向图和无向图。有向图主要是贝叶斯网络,无向图主要是马尔科夫随机场。对两类图,prml都讲了如何将联合概率分解为条件概率,以及如何表示和判断条件依赖。
先说贝叶斯网络,贝叶斯网络是有向图,用节点表示随机变量,用箭头表示变量之间的依赖关系。一个例子:
继续阅读