标签归档:深度学习阅读理解

AI Challenger 2018 文本挖掘类竞赛相关解决方案及代码汇总

Deep Learning Specialization on Coursera

AI Challenger 2018 已近尾声,各赛道top选手已经结束了代码核验,正在准备12月18、19日 AI Challenger 决赛答辩材料的路上。在本年度 AI Challenger 即将尘埃落定之时,这里整理一批目前网上可见的文本挖掘相关赛道的解决方案和代码,欢迎补充,同时感谢github,感谢各位开源的同学。

细粒度用户评论情感分析

在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐、智能搜索、产品反馈、业务安全等。本次比赛我们提供了一个高质量的海量数据集,共包含6大类20个细粒度要素的情感倾向。参赛人员需根据标注的细粒度要素的情感倾向建立算法,对用户评论进行情感挖掘,组委将通过计算参赛者提交预测值和场景真实值之间的误差确定预测正确率,评估所提交的预测算法。

貌似是最火爆的一个赛道,Testa 提交队伍有468支,详细介绍请参考该赛道主页:https://challenger.ai/competition/fsauor2018
继续阅读