Andrew Ng 老师新推的通俗人工智能课程以及其他相关资料

Start your future on Coursera today.

Andrew Ng 老师是我的偶像,他在普及机器学习和深度学习的道路上纵情向前,这不他又在 Coursera 上新推了一门通俗人工智能课程:AI For Everyone(全民AI) :


这门课程面向大众进行AI科普,将于2019年年初开课,目前已经可以注册课程。AI不仅适用于工程师,这门非技术性人工智能课程将帮助学习者了解机器学习和深度学习等相关技术,以及将AI应用于自己组织中的问题和机会。 通过这门课程,学习者将会了解当前人工智能可以或者不能做的事情。最后,学习者将了解AI如何影响社会以及我们将如何应对这种技术变革。

AI is not only for engineers. This non-technical course will help you understand technologies like machine learning and deep learning and spot opportunities to apply AI to problems in your own organization. You will see examples of what today’s AI can – and cannot – do. Finally, you will understand how AI is impacting society and how to navigate through this technological change.

If you are a non-technical business leader, “AI for Everyone” will help you understand how to build a sustainable AI strategy. If you are a machine learning engineer or data scientist, this is the course to ask your manager, VP or CEO to take if you want them to understand what you can (and cannot!) do.


Andrew Ng 深度学习公开课系列第五门课程序列模型开课

Start your future on Coursera today.

Andrew Ng 深度学习课程系列第五门课程序列模型(Sequence Models)在1月的尾巴终于开课 ,在跳票了几次之后,这门和NLP比较相关的深度学习课程终于开课了。这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,目前终于完备,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting applications in speech recognition, music synthesis, chatbots, machine translation, natural language understanding, and many others. You will: - Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs. - Be able to apply sequence models to natural language problems, including text synthesis. - Be able to apply sequence models to audio applications, including speech recognition and music synthesis. This is the fifth and final course of the Deep Learning Specialization.

这门课程主要面向自然语言,语音和其他序列数据进行深度学习建模,将会学习递归神经网络,GRU,LSTM等内容,以及如何将其应用到语音识别,机器翻译,自然语言理解等任务中去。个人认为这是目前互联网上最适合入门深度学习的系列系列课程了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,希望最后这门RNN课程也不负众望。参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程亚美游AMG88整理

Andrew Ng 深度学习课程系列第四门课程卷积神经网络开课

Start your future on Coursera today.

Andrew Ng 深度学习课程系列第四门课程卷积神经网络(Convolutional Neural Networks)将于11月6日开课 ,不过课程资料已经放出,现在注册课程已经可以听课了 ,这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,前三门已经开过好几轮,但是第4、第5门课程一直处于待定状态,新的一轮将于11月7号开始,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization.

个人认为这是目前互联网上最适合入门深度学习的课程系列了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程亚美游AMG88整理

Andrew Ng (吴恩达) 深度学习课程小结

Start your future on Coursera today.

Andrew Ng (吴恩达) 深度学习课程从宣布到现在大概有一个月了,我也在第一时间加入了这个Coursera上的深度学习系列课程,并且在完成第一门课“Neural Networks and Deep Learning(神经网络与深度学习)”的同时写了2018免费送彩金游戏这门课程的一个小结:Andrew Ng 深度学习课程小记。之后我断断续续的完成了第二门深度学习课程“Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization"和第三门深度学习课程“Structuring Machine Learning Projects”的相关视频学习和作业练习,也拿到了课程证书。平心而论,对于一个有经验的工程师来说,这门课程的难度并不高,如果有时间,完全可以在一个周内完成三门课程的相关学习工作。但是对于一个完全没有相关经验但是想入门深度学习的同学来说,可以预先补习一下Python机器学习的相关知识,如果时间允许,建议先修一下 CourseraPython系列课程Python for Everybody Specialization 和 Andrew Ng 本人的 机器学习课程

吴恩达这个深度学习系列课 (Deep Learning Specialization) 有5门子课程,截止目前,第四门"Convolutional Neural Networks" 和第五门"Sequence Models"还没有放出,不过上周四 Coursera 发了一封邮件给学习这门课程的用户:

Dear Learners,

We hope that you are enjoying Structuring Machine Learning Projects and your experience in the Deep Learning Specialization so far!

As we are nearing the one month anniversary of the Deep Learning Specialization, we wanted to thank you for your feedback on the courses thus far, and communicate our timelines for when the next courses of the Specialization will be available.

We plan to begin the first session of Course 4, Convolutional Neural Networks, in early October, with Course 5, Sequence Models, following soon after. We hope these estimated course launch timelines will help you manage your subscription as appropriate.

If you’d like to maintain full access to current course materials on Coursera’s platform for Courses 1-3, you should keep your subscription active. Note that if you only would like to access your Jupyter Notebooks, you can save these locally. If you do not need to access these materials on platform, you can cancel your subscription and restart your subscription later, when the new courses are ready. All of your course progress in the Specialization will be saved, regardless of your decision.

Thank you for your patience as we work on creating a great learning experience for this Specialization. We look forward to sharing this content with you in the coming weeks!

Happy Learning,


大意是第四门深度学习课程 CNN(卷积神经网络)将于10月上旬推出,第五门深度学习课程 Sequence Models(序列模型, RNN等)将紧随其后。对于付费订阅的用户,如果你想随时随地获取当前3门深度学习课程的所有资料,最好保持订阅;如果你仅仅想访问 Jupyter Notebooks,也就是获取相关的编程作业,可以先本地保存它们。你也可以现在取消订阅这门课程,直到之后的课程开始后重新订阅,你的所有学习资料将会保存。所以一个比较省钱的办法,就是现在先离线保存相关课程资料,特别是编程作业等,然后取消订阅。当然对于视频,也可以离线下载,不过现在免费访问这门课程的视频有很多办法,譬如Coursera本身的非订阅模式观看视频,或者网易云课堂免费提供了这门课程的视频部分。不过我依然觉得,吴恩达这门深度学习课程,如果仅仅观看视频,最大的功效不过30%,这门课程的精华就在它的练习和编程作业部分,特别是编程作业,非常值得揣摩,花钱很值。

再次回到 Andrew Ng 这门深度学习课程的子课程上,第二门课程是“Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization",有三周课程,包括是深度神经网络的调参、正则化方法和优化算法讲解:

第一周课程是2018免费送彩金游戏深度学习的实践方面的经验 (Practical aspects of Deep Learning), 包括训练集/验证集/测试集的划分,Bias 和
Variance的问题,神经网络中解决过拟合 (Overfitting) 的 Regularization 和 Dropout 方法,以及Gradient Check等:



第二周深度学习课程是2018免费送彩金游戏神经网络中用到的优化算法 (Optimization algorithms),包括 Mini-batch gradient descent,RMSprop, Adam等优化算法:


第三周深度学习课程主要2018免费送彩金游戏神经网络中的超参数调优和深度学习框架问题(Hyperparameter tuning , Batch Normalization and Programming Frameworks),顺带讲了一下多分类问题和 Softmax regression, 特别是最后一个视频简单介绍了一下 TensorFlow , 并且编程作业也是和TensorFlow相关,对于还没有学习过Tensorflow的同学,刚好是一个入门学习机会,视频介绍和作业设计都很棒:

第三门深度学习课程Structuring Machine Learning Projects”更简单一些,只有两周课程,只有 Quiz, 没有编程作业,算是Andrew Ng 老师2018免费送彩金游戏深度学习或者机器学习项目方法论的一个总结:




“Understand what multi-task learning and transfer learning are
Recognize bias, variance and data-mismatch by looking at the performances of your algorithm on train/dev/test sets”

主要讲解了错误分析(Error Analysis), 不匹配训练数据和开发/测试集数据的处理(Mismatched training and dev/test set),机器学习中的迁移学习(Transfer learning)和多任务学习(Multi-task learning),以及端到端深度学习(End-to-end deep learning):

这周课程的选择题作业仍然是一个案例研究,2018免费送彩金游戏无人驾驶的:Autonomous driving (case study),还是用15个问题串起视频中得知识点,体验依然很棒。

最后,2018免费送彩金游戏Andrew Ng (吴恩达) 深度学习课程系列,Coursera上又启动了新一轮课程周期,9月12号开课,对于错过了上一轮学习的同学,现在加入新的一轮课程刚刚好。不过相信 Andrew Ng 深度学习课程会成为他机器学习课程之后 Coursera 上又一个王牌课程,会不断滚动推出的,所以任何时候加入都不会晚。另外,如果已经加入了这门深度学习课程,建议在学习的过程中即使保存资料,我都是一边学习一边保存这门深度学习课程的相关资料的,包括下载了课程视频用于离线观察,完成Quiz和编程作业之后都会保存一份到电脑上,方便随时查看。

索引:Andrew Ng 深度学习课程小记


本文链接地址:Andrew Ng (吴恩达) 深度学习课程小结 /?p=9761

Andrew Ng 深度学习课程小记

Start your future on Coursera today.

2011年秋季,Andrew Ng 推出了面向入门者的MOOC雏形课程机器学习: Machine Learning,随后在2012年4月,Andrew Ng 在Coursera上推出了改进版的Machine Learning(机器学习)公开课: Andrew Ng' Machine Learning: Master the Fundamentals,这也同时宣告了Coursera平台的诞生。当时我也是第一时间加入了这门课程,并为这门课程写了一些笔记:Coursera公开课笔记: 斯坦福大学机器学习 。同时也是受这股MOOC浪潮的驱使,建立了“课程图谱”,因此结识了不少公开课爱好者和MOOC大神。而在此之前,Andrew Ng 在斯坦福大学的授课视频“机器学习”也流传甚广,但是这门面向斯坦福大学学生的课程难道相对较高。直到2012年Coursera, Udacity等MOOC平台的建立,把课程视频,作业交互,编程练习有机结合在一起,才产生了更有生命力的MOOC课程。Andrew Ng 在为新课程深度学习写的宣传文章“deeplearning.ai: Announcing new Deep Learning courses on Coursera”里提到,这门机器学习课程自从开办以来,大约有180多万学生学习过,这是一个惊人的数字。

回到这个深度学习系列课:Deep Learning Specialization ,该课程正式开课是8月15号,但是在此之前几天已经开放了,加入后可以免费学习7天,之后开始按月费49美元收取,直到取消这个系列的订阅为止。正式加入的好处是,除了课程视频,还可以在Coursera平台上做题和提交编程作业,得到实时反馈,如果通过的话,还可以拿到相应的课程证书。我在上周六加入了这门以 deeplearning.ai 的名义推出的Deep Learning(深度学习)系列课,并且利用业余时间完成了第一门课“Neural Networks and Deep Learning(神经网络与深度学习)”的相关课程,包括视频观看和交互练习以及编程作业,体验很不错。自从Coursera迁移到新平台后,已经很久没有上过相关的公开课了,这次要不是Andrew Ng 离开百度后重现MOOC江湖,点燃了内心久违的MOOC情节,我大概也不会这么认真的去上公开课了。

具体到该深度学习课程的组织上,Andrew Ng 把这门课程的门槛已经降到很低,和他的机器学习课程类似,这是一个面向AI初学者的深度学习系列课程

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning.

In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach.

You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice.

AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work.

We will help you master Deep Learning, understand how to apply it, and build a career in AI.


从实际听课的效果上来看,如果用一个字来总结效果,那就是“值”,花钱也值。该系列第一门课是“Neural Networks and Deep Learning(神经网络与深度学习)” 分为4个部分:

1. Introduction to deep learning
2. Neural Networks Basics
3. Shallow neural networks
4. Deep Neural Networks


第二周2018免费送彩金游戏“神经网络基础”从二分类讲起,到逻辑回归,再到梯度下降,再到用计算图(computation graph )求导,如果之前学过Andrew Ng的“Machine Learning(机器学习)” 公开课,除了Computation Graph, 其他应该都不会陌生:

第二周课程同时也提供了编程作业所需要的基础部分视频课程:Python and Vectorization。这门课程的编程作业使用Python语言,并且提供线上 Jupyter Notebook 编程环境完成作业,无需线下编程验证提交,非常方便。这也和之前机器学习课程的编程作业有了很大区别,之前那门课程使用Octave语言(类似Matlab的GNU Octave),并且是线下编程测试后提交给服务器验证。这次课程线上完成编程作业的感觉是非常棒的,这个稍后再说。另外就是强调数据处理时的 Vectorization(向量化/矢量化),并且重度使用 Numpy 工具包, 如果没有特别提示,请尽量避免使用 "for loop":

当然,这部分最赞的是编程作业的设计了,首先提供了一个热身可选的编程作业:Python Basics with numpy (optional),然后是本部分的相关作业:Logistic Regression with a Neural Network mindset。每部分先有一个引导将这部分的目标讲清楚,然后点击“Open Notebook”开始作业,Notebook中很多相关代码老师已经精心设置好,对于学生来说,只需要在相应提示的部分写上几行关键代码(主要还是Vectorization),运行后有相应的output,如果output和里面提示的期望输出一致的话,就可以点击保存继续下一题了,非常方便,完成作业后就可以提交了,这部分难度不大:

第三周课程2018免费送彩金游戏“浅层神经网络”的课程我最关心的其实是2018免费送彩金游戏反向传播算法的讲解,不过在课程视频中这个列为了可选项,并且实话实话Andrew Ng2018免费送彩金游戏这部分的讲解并不能让我满意,所以如果看完这一部分后对于反向传播算法还不是很清楚的话,可以脑补一下《反向传播算法入门亚美游AMG88索引》中提到的相关文章。不过瑕不掩瑜,老师2018免费送彩金游戏其他部分的讲解依然很棒,包括激活函数的选择,为什么需要一个非线性的激活函数以及神经网络中的初始化参数选择等问题:

虽然视频中留有遗憾,但是编程作业堪称完美,在Python Notebook中老师用代入模式系统的过了一遍神经网络中的基本概念,堪称“手把手教你用Python写一个神经网络”的经典案例:

update: 这个周六(2017.08.20)完成了第四周课程和相关作业,也达到了拿证书的要求,不过需要上传相关证件验证ID,暂时还没有操作。下面是2018免费送彩金游戏第四周课程的一点补充。

第四周课程2018免费送彩金游戏“深度神经网络(Deep Neural Networks)”,主要是多层神经网络的相关概念,有了第三周课程基础,第四周课程视频相对来说比较轻松:



这是我学完Andrew Ng这个深度学习系列课程第一门课程“Neural Networks and Deep Learning(神经网络与深度学习)” 的体验,如果用几个字来总结这个深度学习系列课程,依然是:值、很值、非常值。如果你是完全的人工智能的门外汉或者入门者,那么建议你先修一下Andrew Ng的 Machine Learning(机器学习)公开课 ,用来过渡和理解相关概念,当然这个是可选项;如果你是一个业内的从业者或者深度学习工具的使用者,那么这门课程很适合给你扫清很多迷雾;当然,如果你对机器学习和深度学习了如指掌,完全可以对这门课程一笑了之。

2018免费送彩金游戏是否付费学习这门深度学习课程,个人觉得很值,相对于国内各色收费的人工智能课程,这门课程49美元的月费绝对物超所值,只要你有时间,你完全可以一个月学完所有课程。 特别是其提供的作业练习平台,在尝试了几个周的编程作业后,我已经迫不及待的想进入到其他周课程和编程作业了。

最后再次附上这门课程的链接,正如这门课程的目标所示:掌握深度学习、拥抱AI,现在就加入吧:Deep Learning Specialization: Master Deep Learning, and Break into AI