分类目录归档:文本分类

达观数据曾彦能:如何用深度学习做好长文本分类与法律文书智能化处理

Deep Learning Specialization on Coursera

在NLP领域中,文本分类舆情分析等任务相较于文本抽取,和摘要等任务更容易获得大量标注数据。因此在文本分类领域中深度学习相较于传统方法更容易获得比较好的效果。正是有了文本分类模型的快速演进,海量的法律文书可以通过智能化处理来极大地提高效率。我们今天就来分析一下当前state of art的文本分类模型以及他们在法律文书智能化中的应用。

文本分类领域走过路过不可错过的深度学习模型主要有FastText,TextCNN,HAN,DPCNN。本文试图在实践之后总结一下这些这些分类模型的理论框架,把这些模型相互联系起来,让大家在选择模型与调参的时候能有一些直觉与灵感。在深度学习这个实践为王的领域常有人质疑理论理论无用,我个人的感受是理论首先在根据数据特征筛选模型的时候非常有用,其次在调参的过程中也能大幅提升效率,更重要的是调不出结果的时候,往往脑海里的那一句“这个模型不应该是这样的结果”,以及“这不科学”提供了坚持方向信心。

一、文本分类模型详解

1. FastText

其中FastText结构特别简单,对于速度要求特别高场合适用,他把一篇文章中所有的词向量(还可以加上N-gram向量)直接相加求均值,然后过一个单层神经网络来得出最后的分类结果。很显然,这样的做法对于复杂的文本分类任务来说丢失了太多的信息。FastText的一种简单的增强模型是DAN,改变在于在词向量平均完成后多叠了几层全连接神经网络。对应地,FastText也可以看成是DAN全连接神经网络层数为1的的一种特例。

图1 2层DAN网络

需要特别注意的是,对于不加n-gram向量的FastText模型,他不可能去分辨否定词的位置,看下面的两句话:

我不喜欢这类电影,但是喜欢这一个。

我喜欢这类电影,但是不喜欢这一个。

这样的两句句子经过词向量平均以后已经送入单层神经网络的时候已经完全一模一样了,分类器不可能分辨出这两句话的区别,只有添加n-gram特征以后才可能有区别。因此,在实际应用的时候需要对你的数据有足够的了解。

2. TextCNN

TextCNN相较于fastText模型的结构会复杂一些,在2014年提出,他使用了卷积 + 最大池化这两个在图像领域非常成功的好基友组合。我们先看一下他的结构。如下图所示,示意图中第一层输入为7*5的词向量矩阵,其中词向量维度为5,句子长度为7,然后第二层使用了3组宽度分别为2、3、4的卷积核,图中每种宽度的卷积核使用了两个。

其中每个卷积核在整个句子长度上滑动,得到n个激活值,图中卷积核滑动的过程中没有使用padding,因此宽度为4的卷积核在长度为7的句子上滑动得到4个特征值。然后出场的就是卷积的好基友全局池化了,每一个卷积核输出的特征值列向量通过在整个句子长度上取最大值得到了6个特征值组成的feature map来供后级分类器作为分类的依据。

图2 TextCNN结构

我们知道图像处理中卷积的作用是在整幅图像中计算各个局部区域与卷积核的相似度,一般前几层的卷积核是可以很方便地做可视化的,可视化的结果是前几层的卷积核是在原始输入图像中寻找一些简单的线条。NLP中的卷积核没法做可视化,那么是不是就不能理解他在做什么了呢,其实可以通过模型的结构来来推断他的作用。因为TextCNN中卷积过后直接就是全局max pooling,那么它只能是在卷积的过程中计算与某些关键词的相似度,然后通过max pooling层来得出模型关注那些关键词是否在整个输入文本中出现,以及最相似的关键词与卷积核的相似度最大有多大。我们假设中文输出为字向量,理想情况下一个卷积核代表一个关键词,如下图所示:

图3 TextCNN卷积核的意义示意图

比如说一个2分类舆情分析任务中,如果把整个模型当成一个黑箱,那么去检测他的输出结果,会发现这个模型对于输入文本中是否含有“喜欢”,“热爱”这样的词特别敏感,那么他是怎么做到的呢?整个模型中能够做到遍历整个句子去计算关键词相似度的只有卷积的部分,因为后面直接是对整个句子长度的max pooling。但是因为模型面对的是字向量,并不是字,所以他一个卷积核可能是只学了半个关键词词向量,然后还有另外的卷积核学了另外半个关键词词向量,最后在分类器的地方这些特征值被累加得到了最终的结果。

TextCNN模型最大的问题也是这个全局的max pooling丢失了结构信息,因此很难去发现文本中的转折关系等复杂模式,TextCNN只能知道哪些关键词是否在文本中出现了,以及相似度强度分布,而不可能知道哪些关键词出现了几次以及出现这些关键词出现顺序。假想一下如果把这个中间结果给人来判断,人类也很难得到对于复杂文本的分类结果,所以机器显然也做不到。针对这个问题,可以尝试k-max pooling做一些优化,k-max pooling针对每个卷积核都不只保留最大的值,他保留前k个最大值,并且保留这些值出现的顺序,也即按照文本中的位置顺序来排列这k个最大值。在某些比较复杂的文本上相对于1-max pooling会有提升。

3. HAN(Hierarchy Attention Network)

相较于TextCNN,HAN最大的进步在于完全保留了文章的结构信息,并且特别难能可贵的是,基于attention结构有很强的解释性。

他的结构如下图所示:

图4 HAN结构

输入词向量序列后,通过词级别的Bi-GRU后,每个词都会有一个对应的Bi-GRU输出的隐向量h,再通过uw向量与每个时间步的h向量点积得到attention权重,然后把h序列做一个根据attention权重的加权和,得到句子summary向量s2,每个句子再通过同样的Bi-GRU结构再加attention得到最终输出的文档特征向量v向量,然后v向量通过后级dense层再加分类器得到最终的文本分类结果。模型结构非常符合人的从词->句子->再到篇章的理解过程。

最重要的是该模型在提供了更好的分类精度的情况下,可视化效果非常好。同时在调参过程中,我们发现attention部分对于模型的表达能力影响非常大,整个模型在所有位置调整L2-Loss对模型表达能力带来的影响远不如在两处attention的地方大,这同时也能解释为什么可视化效果比较好,因为attention对于模型的输出贡献很大,而attention又恰恰是可以可视化的。

下面我们来看一下他在法律领域罪名预测任务上的可视化效果。下面的可视化的结果并不是找了极少数效果好的,而是大部分情况下模型的可视化能够解释他的输出。需要注意的是,此处为了让不太重要句子中相对重要的词并不完全不可见,词的亮度=sqrt(句子权重)*词权重。

在非常长的文本中,HAN觉得中间那些完全是废话,不如那句“公诉机关认为”有用,就放弃了。

图5 HAN attention可视化1

如下图所示,模型虽然在文本第二行中看到了窃取的字样,但是他认为这个案件中主要的事件是抢劫,这就是保留文本结构的好处。

图6 HAN attention可视化2

可以看到并不是所有的深度学习模型都是不可以理解的,这种可解释性也会给实际应用带来很多帮助。

4 DPCNN

上面的几个模型,论神经网络的层数,都不深,大致就只有2~3层左右。大家都知道何凯明大神的ResNet是CV中的里程碑,15年参加ImageNet的时候top-5误差率相较于上一年的冠军GoogleNet直接降低了将近一半,证明了网络的深度是非常重要的。

图7 ImageNet历年冠军

那么问题来了,在文本分类领域网络深度提升会带来分类精度的大幅提升吗?我们在一些比较复杂的任务中,以及数据量比较大(百万级)的情况下有提升,但不是ResNet那种决定性的提升。

DPCNN的主要结构如下图所示:

图8 DPCNN结构

从词向量开始(本文的重点在于模型的大结构,因此不去详解文中的region embedding部分,直接将整个部分认为是一种词向量的输出。)先做了两次宽度为3,filter数量为250个的卷积,然后开始做两两相邻的max-pooling,假设输入句子长度padding到1024个词,那么在头两个卷积完成以后句子长度仍然为1024。在block 1的pooling位置,max pooling的width=3,stride=2,也即序列中相邻的3个时间步中每一维feature map取这三个位置中最大的一个留下,也即位置0,1,2中取一个最大值,然后,移动2个时间步,在2,3,4时间步中取一次max,那么pooling输出的序列长度就是511。

后面以此类推,序列长度是呈指数级下降的,这也是文章名字Deep Pyramid的由来。然后通过两个卷积的非线性变换,提取更深层次的特征,再在输出的地方叠加上未经过两次卷积的quick connection通路(ResNet中使得深层网络更容易训练的关键)。因为每个block中的max pooling只是相邻的两个位置做max-pooling,所以每次丢失的结构信息很少,后面的卷积层又能提取更加抽象的特征出来。所以最终模型可以在不丢失太多结构信息的情况下,同时又做了比较深层的非线性变换。

我们实际测试中在非线性度要求比较高的分类任务中DPCNN会比HAN精度高,并且由于他是基于CNN的,训练速度比基于GRU的HAN也要快很多。

二、法律文书智能化应用

达观数据在法律文书智能化处理中也应用了上面的几个模型,并在此基础上做法律行业针对性的优化。在刚刚结束的“法研杯”法律人工智能大赛中达观数据代表队取得了单项三等奖的成绩。

以裁判文书智能化处理为例,达观数据可以通过上述的文本分类器根据一段犯罪事实来向法律工作者推荐与描述的犯罪事实相关的罪名,法律条文,甚至是刑期的预测等。

下面以裁判文书网的一篇裁判文书为例,我们截取其中的犯罪事实部分文字,输入模型。模型会根据输入的文字判断此段分类事实对应的罪名,并且高亮出犯罪事实中的关键内容。

截取裁判文书网中的犯罪事实部分:

图9 裁判文书样例

输入模型:

“公诉机关指控:2017年6月30日22时左右,被告人耿艳峰醉酒驾驶冀T×××××号比亚迪小型轿车沿东孙庄村东水泥路由西向东行驶,行至事发处,与对向被告人孙汉斌无证醉酒驾驶无牌二轮摩托车发生碰撞。造成两车不同程度损坏,孙汉斌受伤的道路交通事故。经衡水市公安局物证鉴定所检验:耿艳峰血液酒精含量为283.11mg/lOOmL;孙汉斌血液酒精含量为95.75mg/mL。经武强县交通警察大队认定:耿艳峰、孙汉斌均负此事故的同等责任。”

得到结果:

图10 模型输出结果

模型会输出预测的罪名以及相关法条的推荐结果,能够极大地提高律师的效率。并且模型还能将关键的句子以及词高亮出来给律师进一步仔细审阅提供方便。

目前在刑法相关的大量样本上罪名预测与相关法条推荐的准确率在90%左右。刑期由于存在不同年代不同地区存在一些差异,目前模型的输出结果还不能特别直观地给出评估。

三、总结

目前state of the art的深度学习文本发分类模型在十万~百万级以上的数据上已经能取得相当不错的效果,并且也有一些可解释性非常强的模型可用。要在实际业务中把文本分类模型用好,除了像文中深入分析理论以外,在大量的业务实践中总结经验也是必不可少的。达观在裁判文书处理等实际任务上实测输出结果也非常不错,并且达观的深度学习文本分类技术也会在各个业务应用中不断优化升级,希望能为法律行业的智能化以及效率优化作出一些贡献。

参考文献:

1.Joulin, Armand, et al. "Bag of Tricks forEfficient Text Classification." Proceedings of the 15th Conferenceof the European Chapter of the Association for Computational Linguistics:Volume 2, Short Papers. Vol. 2. 2017.

2.Iyyer, Mohit, et al. "Deep unorderedcomposition rivals syntactic methods for text classification." Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguistics andthe 7th International Joint Conference on Natural Language Processing (Volume1: Long Papers). Vol. 1. 2015.

3.Kim, Yoon. "Convolutional Neural Networksfor Sentence Classification." Proceedings of the 2014 Conferenceon Empirical Methods in Natural Language Processing (EMNLP). 2014.

4.Yang, Zichao, et al. "Hierarchicalattention networks for document classification." Proceedings of the2016 Conference of the North American Chapter of the Association forComputational Linguistics: Human Language Technologies. 2016.

5.Johnson, Rie, and Tong Zhang. "Deeppyramid convolutional neural networks for text categorization." Proceedingsof the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vol. 1. 2017.

2018免费送彩金游戏作者

曾彦能:达观数据NLP算法工程师,负责达观数据NLP深度学习算法的研究、优化,以及在文本挖掘系统中的具体应用。对文本分类,序列标注模型有深入的研究。曾作为主要成员之一代表达观数据参加2018中国"法研杯" 法律智能挑战赛获得单项三等奖。

AI Challenger 2018 细粒度用户评论情感分析 fastText Baseline

Deep Learning Specialization on Coursera

上一篇《AI Challenger 2018 进行时》文尾我们提到 AI Challenger 官方已经在 GitHub 上提供了多个赛道的 Baseline: AI Challenger 2018 Baseline ,其中文本挖掘相关的3个主赛道均有提供,非常适合用来学习:英中文本机器翻译的 baseline 就直接用了Google官方基于Tensorflow实现的Tensor2Tensor跑神经网络机器翻译Transformer模型,这个思路是我在去年《AI Challenger 2017 奇遇记》里的终极方案,今年已成标配;细粒度用户评论情感分析提供了一个基于支持向量机(SVM)的多分类模型 baseline;观点型问题阅读理解提供一个深度学习模型 baseline , 基于pytorch实现论文《Multiway Attention Networks for Modeling Sentence Pairs》里的思路。

本次 AI Challenger 2018, 除了英中文本机器翻译,另一个我比较关注的赛道是: 细粒度用户评论情感分析。情感分析是自然语言处理里面的一个经典任务,估计很多同学入门NLP的时候都玩过 IMDB Movie Reviews Dataset , 这个可以定义为一个二分类的情感分类问题。不过这次 AI Challenger 的细粒度用户评论情感分析问题,并不是这么简单:
继续阅读

AI Challenger 2018 进行时

Deep Learning Specialization on Coursera

之前写过一篇《AI Challenger 2017 奇遇记》,记录了去年参加 AI Challenger 英中机器文本翻译比赛和英中机器同声传译比赛的过程,得到了一些反馈,特别是一些同学私下留言希望共享语料做科研用,但是限于去年比赛AI Challenger官方的约定,无法私下分享。不过好消息是,AI Challenger 2018 新赛季已经于8月29号启动,总奖金高达300万人民币,单个赛道冠军奖金最高到40万人民币。新赛季英中机器翻译文本大赛继续,提供了一批新的语料,中英双语句对规模大致到了1千3百万句对的水平,真的很赞。

我之前没有参加这类数据竞赛的经验,去年因为做 AIpatent专利机器翻译 产品的缘故,参加了 AI Challenger 2017 两个与机器翻译相关的赛道,并且侥幸进了英中机器同声传译比赛的 Top 5,过程中最大的收获其实是 follow 了一轮最新的神经网络机器翻译模型和试用了一些相关的NMT开源工具,另外也跟踪了机器翻译相关的论文,了解了当前机器翻译的进展情况,这些对于我的工作还是有相当帮助的。

10年前读研的时候,没有MOOC,没有Kaggle,也没有这么多开源的深度学习平台和工具,有时候不得不感慨,对于搞数据挖掘的同学来说,这是最好的时代。对于还在校学习的同学,如果实验室的任务不重,强烈建议参加类似 AI Challenger, Kaggle 这样的比赛,这可能是除了实习之外,又一个很好的积累实战经验的方法之一。在 NLPJob ,我们已经发现有一些招聘方加了一条加分项,例如:有Kaggle比赛获奖或者其他竞赛获奖的优先。而类似的,我们也发现很多同学的简历中参加Kaggle, 天池大数据等竞赛的经历逐渐成了标配。面向校招,在校同学缺乏实战经验,如果又没有一些很好的实验室项目或者实习经历作为筹码,那么参加这类比赛不失为一个很好的简历补充方式。

以下选自 AI Challenger 2018 的相关官方介绍,其中五大主赛道有三个与自然语言处理相关,可见NLP是多么的难。

继续阅读

逻辑回归模型算法研究与案例分析

Deep Learning Specialization on Coursera

逻辑回归模型算法研究与案例分析

(白宁超  2018年9月11日11:37:17)

导读:逻辑回归(Logistic regression)即逻辑模型,属于常见的一种分类算法。本文将从理论介绍开始,搞清楚什么是逻辑回归、回归系数、算法思想、工作原理及其优缺点等。进一步通过两个实际案例深化理解逻辑回归,以及在工程应用进行实现。(本文原创,转载必须注明出处: 决策树模型算法研究与案例分析)

继续阅读

深度 | 朴素贝叶斯模型算法研究与实例分析

Deep Learning Specialization on Coursera

深度 | 朴素贝叶斯模型算法研究与实例分析

(白宁超 2018年9月3日15: 56:20)

导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,包括创建数据集、数据预处理、词集模型和词袋模型、朴素贝叶斯模型训练和优化等。然后结合复旦大学新闻语料进行朴素贝叶斯的应用。最后,大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析)

继续阅读

实现 | 朴素贝叶斯模型算法研究与实例分析

Deep Learning Specialization on Coursera

实现 | 朴素贝叶斯模型算法研究与实例分析

(白宁超 2018年9月2日 11: 16:31)

 

导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,包括创建数据集、数据预处理、词集模型和词袋模型、朴素贝叶斯模型训练和优化等。然后结合复旦大学新闻语料进行朴素贝叶斯的应用。最后,大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析)

继续阅读

理论 | 朴素贝叶斯模型算法研究与实例分析

Deep Learning Specialization on Coursera

理论 | 朴素贝叶斯模型算法研究与实例分析

(白宁超 2018年9月4日10:00:31)

导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,包括创建数据集、数据预处理、词集模型和词袋模型、朴素贝叶斯模型训练和优化等。然后结合复旦大学新闻语料进行朴素贝叶斯的应用。最后,大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析)

继续阅读

KNN模型算法研究与案例分析

Deep Learning Specialization on Coursera

KNN模型算法研究与案例分析

(白宁超 2018年8月30日11:46:14)

导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用。本文通过一个模拟的实际案例进行讲解。整个流程包括:采集数据、数据格式化处理、数据分析、数据归一化处理、构造算法模型、评估算法模型和算法模型的应用。(本文原创,转载必须注明出处)

继续阅读

决策树模型算法研究与案例分析

Deep Learning Specialization on Coursera

决策树模型算法研究与案例分析

(白宁超 2018年8月30日11:46:14)

导读:决策树算法是一种基本的分类与回归方法,是最经常使用的算法之一。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是基于规则的集合。本文首先介绍决策树定义、工作原理、算法流程、优缺点等,然后结合案例进行分析。(本文原创,转载必须注明出处)

继续阅读

fastText原理及实践(达观数据王江)

Deep Learning Specialization on Coursera

王江题图

本文首先会介绍一些预备知识,比如softmax、ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并着手使用keras搭建一个简单的fastText分类器,最后,我们会介绍fastText在达观数据的应用。

 

NO.1
预备知识
Softmax回归

 

Softmax回归(Softmax Regression)又被称作多项逻辑回归(multinomial logistic regression),它是逻辑回归在处理多类别任务上的推广。

在逻辑回归中, 我们有m个被标注的样本:技术干货丨fastText原理及实践其中技术干货丨fastText原理及实践。因为类标是二元的,所以我们有技术干货丨fastText原理及实践。我们的假设(hypothesis)有如下形式:

技术干货丨fastText原理及实践

代价函数(cost function)如下:

技术干货丨fastText原理及实践

在Softmax回归中,类标是大于2的,因此在我们的训练集技术干货丨fastText原理及实践

中,技术干货丨fastText原理及实践。给定一个测试输入x,我们的假设应该输出一个K维的向量,向量内每个元素的值表示x属于当前类别的概率。具体地,假设技术干货丨fastText原理及实践形式如下:

技术干货丨fastText原理及实践

代价函数如下:

技术干货丨fastText原理及实践

 

其中1{·}是指示函数,即1=1,1=0

既然我们说Softmax回归是逻辑回归的推广,那我们是否能够在代价函数上推导出它们的一致性呢?当然可以,于是:

技术干货丨fastText原理及实践

可以看到,逻辑回归是softmax回归在K=2时的特例。

分层Softmax

 

你可能也发现了,标准的Softmax回归中,要计算y=j时的Softmax概率:技术干货丨fastText原理及实践,我们需要对所有的K个概率做归一化,这在|y|很大时非常耗时。于是,分层Softmax诞生了,它的基本思想是使用树的层级结构替代扁平化的标准Softmax,使得在计算技术干货丨fastText原理及实践时,只需计算一条路径上的所有节点的概率值,无需在意其它的节点。

下图是一个分层Softmax示例:

11

树的结构是根据类标的频数构造的霍夫曼树。K个不同的类标组成所有的叶子节点,K-1个内部节点作为内部参数,从根节点到某个叶子节点经过的节点和边形成一条路径,路径长度被表示为技术干货丨fastText原理及实践。于是,技术干货丨fastText原理及实践就可以被写成:

技术干货丨fastText原理及实践

其中:

技术干货丨fastText原理及实践表示sigmoid函数;

技术干货丨fastText原理及实践表示n节点的左孩子;

技术干货丨fastText原理及实践是一个特殊的函数,被定义为:

技术干货丨fastText原理及实践

技术干货丨fastText原理及实践是中间节点技术干货丨fastText原理及实践的参数;X是Softmax层的输入。

上图中,高亮的节点和边是从根节点到 技术干货丨fastText原理及实践 的路径,路径长度技术干货丨fastText原理及实践

可以被表示为:

技术干货丨fastText原理及实践

于是,从根节点走到叶子节点技术干货丨fastText原理及实践,实际上是在做了3次二分类的逻辑回归。

通过分层的Softmax,计算复杂度一下从|K|降低到log|K|。

 

n-gram特征

 

在文本特征提取中,常常能看到n-gram的身影。它是一种基于语言模型的算法,基本思想是将文本内容按照字节顺序进行大小为N的滑动窗口操作,最终形成长度为N的字节片段序列。看下面的例子:

我来到达观数据参观

相应的bigram特征为:我来 来到 到达 达观 观数 数据 据参 参观

相应的trigram特征为:我来到 来到达 到达观 达观数 观数据 数据参 据参观

 

注意一点:n-gram中的gram根据粒度不同,有不同的含义。它可以是字粒度,也可以是词粒度的。上面所举的例子属于字粒度的n-gram,词粒度的n-gram看下面例子:

 

我 来到 达观数据 参观
 
相应的bigram特征为:我/来到 来到/达观数据 达观数据/参观
相应的trigram特征为:我/来到/达观数据 来到/达观数据/参观 

n-gram产生的特征只是作为文本特征的候选集,你后面可能会采用信息熵、卡方统计、IDF等文本特征选择方式筛选出比较重要特征。

 

NO.2

Word2vec

你可能要问,这篇文章不是介绍fastText的么,怎么开始介绍起了word2vec?

最主要的原因是word2vec的CBOW模型架构和fastText模型非常相似。于是,你看到facebook开源的fastText工具不仅实现了fastText文本分类工具,还实现了快速词向量训练工具。word2vec主要有两种模型:skip-gram 模型和CBOW模型,这里只介绍CBOW模型,有关skip-gram模型的内容请参考达观另一篇技术文章:

漫谈Word2vec之skip-gram模型

模型架构

CBOW模型的基本思路是:用上下文预测目标词汇。架构图如下所示:

技术干货丨fastText原理及实践

输入层由目标词汇y的上下文单词 技术干货丨fastText原理及实践 组成, 技术干货丨fastText原理及实践 是被onehot编码过的V维向量,其中V是词汇量;隐含层是N维向量h;输出层是被onehot编码过的目标词y。输入向量通过 技术干货丨fastText原理及实践维的权重矩阵W连接到隐含层;隐含层通过 技术干货丨fastText原理及实践 维的权重矩阵 技术干货丨fastText原理及实践 连接到输出层。因为词库V往往非常大,使用标准的softmax计算相当耗时,于是CBOW的输出层采用的正是上文提到过的分层Softmax。

前向传播

输入是如何计算而获得输出呢?先假设我们已经获得了权重矩阵技术干货丨fastText原理及实践技术干货丨fastText原理及实践(具体的推导见第3节),隐含层h的输出的计算公式:

技术干货丨fastText原理及实践

即:隐含层的输出是C个上下文单词向量的加权平均,权重为W

接着我们计算输出层的每个节点:

技术干货丨fastText原理及实践

这里技术干货丨fastText原理及实践是矩阵技术干货丨fastText原理及实践的第j列,最后,将技术干货丨fastText原理及实践作为softmax函数的输入,得到技术干货丨fastText原理及实践

技术干货丨fastText原理及实践

反向传播学习权重矩阵

在学习权重矩阵和过程中,我们首先随机产生初始值,然后feed训练样本到我们的模型,并观测我们期望输出和真实输出的误差。接着,我们计算误差2018免费送彩金游戏权重矩阵的梯度,并在梯度的方向纠正它们。

首先定义损失函数,objective是最大化给定输入上下文,target单词的条件概率。因此,损失函数为:

技术干货丨fastText原理及实践

这里,技术干货丨fastText原理及实践表示目标单词在词库V中的索引。

如何更新权重技术干货丨fastText原理及实践?

我们先对E2018免费送彩金游戏技术干货丨fastText原理及实践求导:

技术干货丨fastText原理及实践

技术干货丨fastText原理及实践函数表示:

技术干货丨fastText原理及实践

于是,技术干货丨fastText原理及实践的更新公式:

技术干货丨fastText原理及实践

如何更新权重W

我们首先计算E2018免费送彩金游戏隐含层节点的导数:

技术干货丨fastText原理及实践

然后,E2018免费送彩金游戏权重的导数为:

技术干货丨fastText原理及实践

于是,技术干货丨fastText原理及实践的更新公式:

技术干货丨fastText原理及实践

 

NO.3

fastText分类

终于到我们的fastText出场了。这里有一点需要特别注意,一般情况下,使用fastText进行文本分类的同时也会产生词的embedding,即embedding是fastText分类的产物。除非你决定使用预训练的embedding来训练fastText分类模型,这另当别论。

字符级别的n-gram

word2vec把语料库中的每个单词当成原子的,它会为每个单词生成一个向量。这忽略了单词内部的形态特征,比如:“apple” 和“apples”,“达观数据”和“达观”,这两个例子中,两个单词都有较多公共字符,即它们的内部形态类似,但是在传统的word2vec中,这种单词内部形态信息因为它们被转换成不同的id丢失了。

 

为了克服这个问题,fastText使用了字符级别的n-grams来表示一个单词。对于单词“apple”,假设n的取值为3,则它的trigram有:

“<ap”,  “app”,  “ppl”,  “ple”, “le>”

其中,<表示前缀,>表示后缀。于是,我们可以用这些trigram来表示“apple”这个单词,进一步,我们可以用这5个trigram的向量叠加来表示“apple”的词向量。

这带来两点好处

1. 对于低频词生成的词向量效果会更好。因为它们的n-gram可以和其它词共享。

2. 对于训练词库之外的单词,仍然可以构建它们的词向量。我们可以叠加它们的字符级n-gram向量。

模型架构

之前提到过,fastText模型架构和word2vec的CBOW模型架构非常相似。下面是fastText模型架构图:

技术干货丨fastText原理及实践

注意:此架构图没有展示词向量的训练过程。可以看到,和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。

不同的是,CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征,这些特征用来表示单个文档;CBOW的输入单词被onehot编码过,fastText的输入特征是被embedding过;CBOW的输出是目标词汇,fastText的输出是文档对应的类标。

值得注意的是,fastText在输入时,将单词的字符级别的n-gram向量作为额外的特征;在输出时,fastText采用了分层Softmax,大大降低了模型训练时间。这两个知识点在前文中已经讲过,这里不再赘述。

fastText相关公式的推导和CBOW非常类似,这里也不展开了。

核心思想

现在抛开那些不是很讨人喜欢的公式推导,来想一想fastText文本分类的核心思想是什么?

仔细观察模型的后半部分,即从隐含层输出到输出层输出,会发现它就是一个softmax线性多类别分类器,分类器的输入是一个用来表征当前文档的向量;模型的前半部分,即从输入层输入到隐含层输出部分,主要在做一件事情:生成用来表征文档的向量。那么它是如何做的呢?叠加构成这篇文档的所有词及n-gram的词向量,然后取平均。叠加词向量背后的思想就是传统的词袋法,即将文档看成一个由词构成的集合。

于是fastText的核心思想就是:将整篇文档的词及n-gram向量叠加平均得到文档向量,然后使用文档向量做softmax多分类。这中间涉及到两个技巧:字符级n-gram特征的引入以及分层Softmax分类。

2018免费送彩金游戏分类效果

还有个问题,就是为何fastText的分类效果常常不输于传统的非线性分类器?

假设我们有两段文本:

我 来到 达观数据

俺 去了 达而观信息科技

这两段文本意思几乎一模一样,如果要分类,肯定要分到同一个类中去。但在传统的分类器中,用来表征这两段文本的向量可能差距非常大。传统的文本分类中,你需要计算出每个词的权重,比如tfidf值, “我”和“俺” 算出的tfidf值相差可能会比较大,其它词类似,于是,VSM(向量空间模型)中用来表征这两段文本的文本向量差别可能比较大。

 

但是fastText就不一样了,它是用单词的embedding叠加获得的文档向量,词向量的重要特点就是向量的距离可以用来衡量单词间的语义相似程度,于是,在fastText模型中,这两段文本的向量应该是非常相似的,于是,它们很大概率会被分到同一个类中。

使用词embedding而非词本身作为特征,这是fastText效果好的一个原因;另一个原因就是字符级n-gram特征的引入对分类效果会有一些提升 。

 

NO.4

手写一个fastText

keras是一个抽象层次很高的神经网络API,由python编写,底层可以基于Tensorflow、Theano或者CNTK。它的优点在于:用户友好、模块性好、易扩展等。所以下面我会用keras简单搭一个fastText的demo版,生产可用的fastText请移步https://github.com/facebookresearch/fastText

如果你弄懂了上面所讲的它的原理,下面的demo对你来讲应该是非常明了的。

为了简化我们的任务:

1. 训练词向量时,我们使用正常的word2vec方法,而真实的fastText还附加了字符级别的n-gram作为特征输入;

2. 我们的输出层使用简单的softmax分类,而真实的fastText使用的是Hierarchical Softmax。

首先定义几个常量:

VOCAB_SIZE = 2000

EMBEDDING_DIM =100

MAX_WORDS = 500

CLASS_NUM = 5

VOCAB_SIZE表示词汇表大小,这里简单设置为2000;

EMBEDDING_DIM表示经过embedding层输出,每个词被分布式表示的向量的维度,这里设置为100。比如对于“达观”这个词,会被一个长度为100的类似于[ 0.97860014, 5.93589592, 0.22342691, -3.83102846, -0.23053935, …]的实值向量来表示;

MAX_WORDS表示一篇文档最多使用的词个数,因为文档可能长短不一(即词数不同),为了能feed到一个固定维度的神经网络,我们需要设置一个最大词数,对于词数少于这个阈值的文档,我们需要用“未知词”去填充。比如可以设置词汇表中索引为0的词为“未知词”,用0去填充少于阈值的部分;

CLASS_NUM表示类别数,多分类问题,这里简单设置为5。

模型搭建遵循以下步骤

1. 添加输入层(embedding层)。Embedding层的输入是一批文档,每个文档由一个词汇索引序列构成。例如:[10, 30, 80, 1000] 可能表示“我 昨天 来到 达观数据”这个短文本,其中“我”、“昨天”、“来到”、“达观数据”在词汇表中的索引分别是10、30、80、1000;Embedding层将每个单词映射成EMBEDDING_DIM维的向量。于是:input_shape=(BATCH_SIZE, MAX_WORDS), output_shape=(BATCH_SIZE,MAX_WORDS, EMBEDDING_DIM);

2. 添加隐含层(投影层)。投影层对一个文档中所有单词的向量进行叠加平均。keras提供的GlobalAveragePooling1D类可以帮我们实现这个功能。这层的input_shape是Embedding层的output_shape,这层的output_shape=( BATCH_SIZE, EMBEDDING_DIM);

3. 添加输出层(softmax层)。真实的fastText这层是Hierarchical Softmax,因为keras原生并没有支持Hierarchical Softmax,所以这里用Softmax代替。这层指定了CLASS_NUM,对于一篇文档,输出层会产生CLASS_NUM个概率值,分别表示此文档属于当前类的可能性。这层的output_shape=(BATCH_SIZE, CLASS_NUM)

4. 指定损失函数、优化器类型、评价指标,编译模型。损失函数我们设置为categorical_crossentropy,它就是我们上面所说的softmax回归的损失函数;优化器我们设置为SGD,表示随机梯度下降优化器;评价指标选择accuracy,表示精度。

用训练数据feed模型时,你需要:

1. 将文档分好词,构建词汇表。词汇表中每个词用一个整数(索引)来代替,并预留“未知词”索引,假设为0;

2. 对类标进行onehot化。假设我们文本数据总共有3个类别,对应的类标分别是1、2、3,那么这三个类标对应的onehot向量分别是[1, 0,
0]、[0, 1, 0]、[0, 0, 1];

3. 对一批文本,将每个文本转化为词索引序列,每个类标转化为onehot向量。就像之前的例子,“我 昨天 来到 达观数据”可能被转化为[10, 30,
80, 1000];它属于类别1,它的类标就是[1, 0, 0]。由于我们设置了MAX_WORDS=500,这个短文本向量后面就需要补496个0,即[10, 30, 80, 1000, 0, 0, 0, …, 0]。因此,batch_xs的 维度为( BATCH_SIZE,MAX_WORDS),batch_ys的维度为(BATCH_SIZE, CLASS_NUM)。

下面是构建模型的代码,数据处理、feed数据到模型的代码比较繁琐,这里不展示。

技术干货丨fastText原理及实践

 

NO.5

fastText原理及实践

fastText在达观数据的应用

fastText作为诞生不久的词向量训练、文本分类工具,在达观得到了比较深入的应用。主要被用在以下两个系统:

1. 同近义词挖掘。Facebook开源的fastText工具也实现了词向量的训练,达观基于各种垂直领域的语料,使用其挖掘出一批同近义词;

2. 文本分类系统。在类标数、数据量都比较大时,达观会选择fastText 来做文本分类,以实现快速训练预测、节省内存的目的。