分类目录归档:深度学习

达观数据曾彦能:如何用深度学习做好长文本分类与法律文书智能化处理

Deep Learning Specialization on Coursera

在NLP领域中,文本分类舆情分析等任务相较于文本抽取,和摘要等任务更容易获得大量标注数据。因此在文本分类领域中深度学习相较于传统方法更容易获得比较好的效果。正是有了文本分类模型的快速演进,海量的法律文书可以通过智能化处理来极大地提高效率。我们今天就来分析一下当前state of art的文本分类模型以及他们在法律文书智能化中的应用。

文本分类领域走过路过不可错过的深度学习模型主要有FastText,TextCNN,HAN,DPCNN。本文试图在实践之后总结一下这些这些分类模型的理论框架,把这些模型相互联系起来,让大家在选择模型与调参的时候能有一些直觉与灵感。在深度学习这个实践为王的领域常有人质疑理论理论无用,我个人的感受是理论首先在根据数据特征筛选模型的时候非常有用,其次在调参的过程中也能大幅提升效率,更重要的是调不出结果的时候,往往脑海里的那一句“这个模型不应该是这样的结果”,以及“这不科学”提供了坚持方向信心。

一、文本分类模型详解

1. FastText

其中FastText结构特别简单,对于速度要求特别高场合适用,他把一篇文章中所有的词向量(还可以加上N-gram向量)直接相加求均值,然后过一个单层神经网络来得出最后的分类结果。很显然,这样的做法对于复杂的文本分类任务来说丢失了太多的信息。FastText的一种简单的增强模型是DAN,改变在于在词向量平均完成后多叠了几层全连接神经网络。对应地,FastText也可以看成是DAN全连接神经网络层数为1的的一种特例。

图1 2层DAN网络

需要特别注意的是,对于不加n-gram向量的FastText模型,他不可能去分辨否定词的位置,看下面的两句话:

我不喜欢这类电影,但是喜欢这一个。

我喜欢这类电影,但是不喜欢这一个。

这样的两句句子经过词向量平均以后已经送入单层神经网络的时候已经完全一模一样了,分类器不可能分辨出这两句话的区别,只有添加n-gram特征以后才可能有区别。因此,在实际应用的时候需要对你的数据有足够的了解。

2. TextCNN

TextCNN相较于fastText模型的结构会复杂一些,在2014年提出,他使用了卷积 + 最大池化这两个在图像领域非常成功的好基友组合。我们先看一下他的结构。如下图所示,示意图中第一层输入为7*5的词向量矩阵,其中词向量维度为5,句子长度为7,然后第二层使用了3组宽度分别为2、3、4的卷积核,图中每种宽度的卷积核使用了两个。

其中每个卷积核在整个句子长度上滑动,得到n个激活值,图中卷积核滑动的过程中没有使用padding,因此宽度为4的卷积核在长度为7的句子上滑动得到4个特征值。然后出场的就是卷积的好基友全局池化了,每一个卷积核输出的特征值列向量通过在整个句子长度上取最大值得到了6个特征值组成的feature map来供后级分类器作为分类的依据。

图2 TextCNN结构

我们知道图像处理中卷积的作用是在整幅图像中计算各个局部区域与卷积核的相似度,一般前几层的卷积核是可以很方便地做可视化的,可视化的结果是前几层的卷积核是在原始输入图像中寻找一些简单的线条。NLP中的卷积核没法做可视化,那么是不是就不能理解他在做什么了呢,其实可以通过模型的结构来来推断他的作用。因为TextCNN中卷积过后直接就是全局max pooling,那么它只能是在卷积的过程中计算与某些关键词的相似度,然后通过max pooling层来得出模型关注那些关键词是否在整个输入文本中出现,以及最相似的关键词与卷积核的相似度最大有多大。我们假设中文输出为字向量,理想情况下一个卷积核代表一个关键词,如下图所示:

图3 TextCNN卷积核的意义示意图

比如说一个2分类舆情分析任务中,如果把整个模型当成一个黑箱,那么去检测他的输出结果,会发现这个模型对于输入文本中是否含有“喜欢”,“热爱”这样的词特别敏感,那么他是怎么做到的呢?整个模型中能够做到遍历整个句子去计算关键词相似度的只有卷积的部分,因为后面直接是对整个句子长度的max pooling。但是因为模型面对的是字向量,并不是字,所以他一个卷积核可能是只学了半个关键词词向量,然后还有另外的卷积核学了另外半个关键词词向量,最后在分类器的地方这些特征值被累加得到了最终的结果。

TextCNN模型最大的问题也是这个全局的max pooling丢失了结构信息,因此很难去发现文本中的转折关系等复杂模式,TextCNN只能知道哪些关键词是否在文本中出现了,以及相似度强度分布,而不可能知道哪些关键词出现了几次以及出现这些关键词出现顺序。假想一下如果把这个中间结果给人来判断,人类也很难得到对于复杂文本的分类结果,所以机器显然也做不到。针对这个问题,可以尝试k-max pooling做一些优化,k-max pooling针对每个卷积核都不只保留最大的值,他保留前k个最大值,并且保留这些值出现的顺序,也即按照文本中的位置顺序来排列这k个最大值。在某些比较复杂的文本上相对于1-max pooling会有提升。

3. HAN(Hierarchy Attention Network)

相较于TextCNN,HAN最大的进步在于完全保留了文章的结构信息,并且特别难能可贵的是,基于attention结构有很强的解释性。

他的结构如下图所示:

图4 HAN结构

输入词向量序列后,通过词级别的Bi-GRU后,每个词都会有一个对应的Bi-GRU输出的隐向量h,再通过uw向量与每个时间步的h向量点积得到attention权重,然后把h序列做一个根据attention权重的加权和,得到句子summary向量s2,每个句子再通过同样的Bi-GRU结构再加attention得到最终输出的文档特征向量v向量,然后v向量通过后级dense层再加分类器得到最终的文本分类结果。模型结构非常符合人的从词->句子->再到篇章的理解过程。

最重要的是该模型在提供了更好的分类精度的情况下,可视化效果非常好。同时在调参过程中,我们发现attention部分对于模型的表达能力影响非常大,整个模型在所有位置调整L2-Loss对模型表达能力带来的影响远不如在两处attention的地方大,这同时也能解释为什么可视化效果比较好,因为attention对于模型的输出贡献很大,而attention又恰恰是可以可视化的。

下面我们来看一下他在法律领域罪名预测任务上的可视化效果。下面的可视化的结果并不是找了极少数效果好的,而是大部分情况下模型的可视化能够解释他的输出。需要注意的是,此处为了让不太重要句子中相对重要的词并不完全不可见,词的亮度=sqrt(句子权重)*词权重。

在非常长的文本中,HAN觉得中间那些完全是废话,不如那句“公诉机关认为”有用,就放弃了。

图5 HAN attention可视化1

如下图所示,模型虽然在文本第二行中看到了窃取的字样,但是他认为这个案件中主要的事件是抢劫,这就是保留文本结构的好处。

图6 HAN attention可视化2

可以看到并不是所有的深度学习模型都是不可以理解的,这种可解释性也会给实际应用带来很多帮助。

4 DPCNN

上面的几个模型,论神经网络的层数,都不深,大致就只有2~3层左右。大家都知道何凯明大神的ResNet是CV中的里程碑,15年参加ImageNet的时候top-5误差率相较于上一年的冠军GoogleNet直接降低了将近一半,证明了网络的深度是非常重要的。

图7 ImageNet历年冠军

那么问题来了,在文本分类领域网络深度提升会带来分类精度的大幅提升吗?我们在一些比较复杂的任务中,以及数据量比较大(百万级)的情况下有提升,但不是ResNet那种决定性的提升。

DPCNN的主要结构如下图所示:

图8 DPCNN结构

从词向量开始(本文的重点在于模型的大结构,因此不去详解文中的region embedding部分,直接将整个部分认为是一种词向量的输出。)先做了两次宽度为3,filter数量为250个的卷积,然后开始做两两相邻的max-pooling,假设输入句子长度padding到1024个词,那么在头两个卷积完成以后句子长度仍然为1024。在block 1的pooling位置,max pooling的width=3,stride=2,也即序列中相邻的3个时间步中每一维feature map取这三个位置中最大的一个留下,也即位置0,1,2中取一个最大值,然后,移动2个时间步,在2,3,4时间步中取一次max,那么pooling输出的序列长度就是511。

后面以此类推,序列长度是呈指数级下降的,这也是文章名字Deep Pyramid的由来。然后通过两个卷积的非线性变换,提取更深层次的特征,再在输出的地方叠加上未经过两次卷积的quick connection通路(ResNet中使得深层网络更容易训练的关键)。因为每个block中的max pooling只是相邻的两个位置做max-pooling,所以每次丢失的结构信息很少,后面的卷积层又能提取更加抽象的特征出来。所以最终模型可以在不丢失太多结构信息的情况下,同时又做了比较深层的非线性变换。

我们实际测试中在非线性度要求比较高的分类任务中DPCNN会比HAN精度高,并且由于他是基于CNN的,训练速度比基于GRU的HAN也要快很多。

二、法律文书智能化应用

达观数据在法律文书智能化处理中也应用了上面的几个模型,并在此基础上做法律行业针对性的优化。在刚刚结束的“法研杯”法律人工智能大赛中达观数据代表队取得了单项三等奖的成绩。

以裁判文书智能化处理为例,达观数据可以通过上述的文本分类器根据一段犯罪事实来向法律工作者推荐与描述的犯罪事实相关的罪名,法律条文,甚至是刑期的预测等。

下面以裁判文书网的一篇裁判文书为例,我们截取其中的犯罪事实部分文字,输入模型。模型会根据输入的文字判断此段分类事实对应的罪名,并且高亮出犯罪事实中的关键内容。

截取裁判文书网中的犯罪事实部分:

图9 裁判文书样例

输入模型:

“公诉机关指控:2017年6月30日22时左右,被告人耿艳峰醉酒驾驶冀T×××××号比亚迪小型轿车沿东孙庄村东水泥路由西向东行驶,行至事发处,与对向被告人孙汉斌无证醉酒驾驶无牌二轮摩托车发生碰撞。造成两车不同程度损坏,孙汉斌受伤的道路交通事故。经衡水市公安局物证鉴定所检验:耿艳峰血液酒精含量为283.11mg/lOOmL;孙汉斌血液酒精含量为95.75mg/mL。经武强县交通警察大队认定:耿艳峰、孙汉斌均负此事故的同等责任。”

得到结果:

图10 模型输出结果

模型会输出预测的罪名以及相关法条的推荐结果,能够极大地提高律师的效率。并且模型还能将关键的句子以及词高亮出来给律师进一步仔细审阅提供方便。

目前在刑法相关的大量样本上罪名预测与相关法条推荐的准确率在90%左右。刑期由于存在不同年代不同地区存在一些差异,目前模型的输出结果还不能特别直观地给出评估。

三、总结

目前state of the art的深度学习文本发分类模型在十万~百万级以上的数据上已经能取得相当不错的效果,并且也有一些可解释性非常强的模型可用。要在实际业务中把文本分类模型用好,除了像文中深入分析理论以外,在大量的业务实践中总结经验也是必不可少的。达观在裁判文书处理等实际任务上实测输出结果也非常不错,并且达观的深度学习文本分类技术也会在各个业务应用中不断优化升级,希望能为法律行业的智能化以及效率优化作出一些贡献。

参考文献:

1.Joulin, Armand, et al. "Bag of Tricks forEfficient Text Classification." Proceedings of the 15th Conferenceof the European Chapter of the Association for Computational Linguistics:Volume 2, Short Papers. Vol. 2. 2017.

2.Iyyer, Mohit, et al. "Deep unorderedcomposition rivals syntactic methods for text classification." Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguistics andthe 7th International Joint Conference on Natural Language Processing (Volume1: Long Papers). Vol. 1. 2015.

3.Kim, Yoon. "Convolutional Neural Networksfor Sentence Classification." Proceedings of the 2014 Conferenceon Empirical Methods in Natural Language Processing (EMNLP). 2014.

4.Yang, Zichao, et al. "Hierarchicalattention networks for document classification." Proceedings of the2016 Conference of the North American Chapter of the Association forComputational Linguistics: Human Language Technologies. 2016.

5.Johnson, Rie, and Tong Zhang. "Deeppyramid convolutional neural networks for text categorization." Proceedingsof the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vol. 1. 2017.

2018免费送彩金游戏作者

曾彦能:达观数据NLP算法工程师,负责达观数据NLP深度学习算法的研究、优化,以及在文本挖掘系统中的具体应用。对文本分类,序列标注模型有深入的研究。曾作为主要成员之一代表达观数据参加2018中国"法研杯" 法律智能挑战赛获得单项三等奖。

逻辑回归模型算法研究与案例分析

Deep Learning Specialization on Coursera

逻辑回归模型算法研究与案例分析

(白宁超  2018年9月11日11:37:17)

导读:逻辑回归(Logistic regression)即逻辑模型,属于常见的一种分类算法。本文将从理论介绍开始,搞清楚什么是逻辑回归、回归系数、算法思想、工作原理及其优缺点等。进一步通过两个实际案例深化理解逻辑回归,以及在工程应用进行实现。(本文原创,转载必须注明出处: 决策树模型算法研究与案例分析)

继续阅读

从零开始搭建深度学习服务器: 1080TI四卡并行(Ubuntu16.04+CUDA9.2+cuDNN7.1+TensorFlow+Keras)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

最近公司又弄了一套4卡1080TI机器,配置基本上和之前是一致的,只是显卡换成了技嘉的伪公版1080TI:技嘉GIGABYTE GTX1080Ti 涡轮风扇108TTURBO-11GD

部件	型号	价格	链接	备注CPU	英特尔(Intel)酷睿六核i7-6850K 盒装CPU处理器 	4599	http://item.jd.com/11814000696.html	散热器	美商海盗船 H55 水冷	449	https://item.jd.com/10850633518.html	主板	华硕(ASUS)华硕 X99-E WS/USB 3.1工作站主板	4759	内存	美商海盗船(USCORSAIR) 复仇者LPX DDR4 3000 32GB(16Gx4条)  	2799 * 2	https://item.jd.com/1990572.html	SSD	三星(SAMSUNG) 960 EVO 250G M.2 NVMe 固态硬盘	599	https://item.jd.com/3739097.html		硬盘	希捷(SEAGATE)酷鱼系列 4TB 5900转 台式机机械硬盘 * 2 	629 * 2	https://item.jd.com/4220257.html	电源	美商海盗船 AX1500i 全模组电源 80Plus金牌	3699	https://item.jd.com/10783917878.html机箱	美商海盗船 AIR540 USB3.0 	949	http://item.jd.com/12173900062.html显卡	技嘉(GIGABYTE) GTX1080Ti 11GB 非公版高端游戏显卡深度学习涡轮 * 4 7400 * 4    https://item.jd.com/10583752777.html

这台深度学习主机大概是这样的:

深度学习主机

安装完Ubuntu16.04之后,我又开始了CUDA、cuDnn等深度学习环境和工具的安装之旅,时隔大半年,又有了很多变化,特别是CUDA9.x和cuDnn7.x已经成了标配,这里记录一下。

安装CUDA9.x

注:如果还需要安装Tensorflow1.8,建议这里安装CUDA9.0,我在另一台机器上遇到了一点问题,怀疑和我这台机器先安装CUDA9.0,再安装CUDA9.2有关。

依然从英伟达官方下载当前的CUDA版本,我选择了最新的CUDA9.2:

点选完对应Ubuntu16.04的CUDA9.2 deb版本之后,英伟达官方主页会给出安装提示:

Installation Instructions:
`sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb`
`sudo apt-key add /var/cuda-repo-/7fa2af80.pub`
`sudo apt-get update`
`sudo apt-get install cuda`

在下载完大概1.2G的cuda deb版本之后,实际安装命令是这样的:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.debsudo apt-key add /var/cuda-repo-9-2-local/7fa2af80.pubsudo apt-get updatesudo apt-get install cuda

官方CUDA下载下载页面还附带了一个cuBLAS 9.2 Patch更新,官方强烈建议安装:

This update includes fix to cublas GEMM APIs on V100 Tensor Core GPUs when used with default algorithm CUBLAS_GEMM_DEFAULT_TENSOR_OP. We strongly recommend installing this update as part of CUDA Toolkit 9.2 installation.

可以用如下方式安装这个Patch更新:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local-cublas-update-1_1.0-1_amd64.deb sudo apt-get update  sudo apt-get upgrade cuda

CUDA9.2安装完毕之后,1080TI的显卡驱动也附带安装了,可以重启机器,然后用 nvidia-smi 命令查看一下:

最后在在 ~/.bashrc 中设置环境变量:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}export CUDA_HOME=/usr/local/cuda

运行 source ~/.bashrc 使其生效。

安装cuDNN7.x

同样去英伟达官网的cuDNN下载页面:https://developer.nvidia.com/rdp/cudnn-download,最新版本是cuDNN7.1.4,有三个版本可以选择,分别面向CUDA8.0, CUDA9.0, CUDA9.2:

cudnn7.1.4 cuda9.2 ubuntu16.04

下载完cuDNN7.1的压缩包之后解压,然后将相关文件拷贝到cuda的系统路径下即可:

tar -zxvf cudnn-9.2-linux-x64-v7.1.tgzsudo cp cuda/include/cudnn.h /usr/local/cuda/include/sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d sudo chmod a+r /usr/local/cuda/include/cudnn.hsudo chmod a+r /usr/local/cuda/lib64/libcudnn*

安装TensorFlow 1.8

TensorFlow的安装变得越来越简单,现在TensorFlow的官网也有中文安装文档了:https://www.tensorflow.org/install/install_linux?hl=zh-cn , 我们Follow这个文档,用Virtualenv的安装方式进行TensorFlow的安装,不过首先要配置一下基础环境。

首先在Ubuntu16.04里安装 libcupti-dev 库:

这是 NVIDIA CUDA 分析工具接口。此库提供高级分析支持。要安装此库,请针对 CUDA 工具包 8.0 或更高版本发出以下命令:

$ sudo apt-get install cuda-command-line-tools
并将其路径添加到您的 LD_LIBRARY_PATH 环境变量中:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
对于 CUDA 工具包 7.5 或更低版本,请发出以下命令:

$ sudo apt-get install libcupti-dev

然而我运行“sudo apt-get install cuda-command-line-tools”命令后得到的却是:

E: 无法定位软件包 cuda-command-line-tools

Google后发现其实在安装CUDA9.2的时候,这个包已经安装了,在CUDA的路径下这个库已经有了:

/usr/local/cuda/extras/CUPTI/lib64$ lslibcupti.so  libcupti.so.9.2  libcupti.so.9.2.88

现在只需要将其加入到环境变量中,在~/.bashrc中添加如下声明并令source ~/.bashrc另其生效即可:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64

剩下的就更简单了:

sudo apt-get install python-pip python-dev python-virtualenv virtualenv --system-site-packages tensorflow1.8source tensorflow1.8/bin/activateeasy_install -U pippip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade tensorflow-gpu

强烈建议将清华的pip源写到配置文件里,这样就更方便快捷了。

最后测试一下TensorFlow1.8:

Python 2.7.12 (default, Dec  4 2017, 14:50:18) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
2018-06-17 12:15:34.158680: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-06-17 12:15:34.381812: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 0 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:05:00.0
totalMemory: 10.91GiB freeMemory: 5.53GiB
2018-06-17 12:15:34.551451: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 1 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:06:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.780350: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 2 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:09:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.959199: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 3 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:0a:00.0
totalMemory: 10.92GiB freeMemory: 5.80GiB
2018-06-17 12:15:34.966403: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0, 1, 2, 3
2018-06-17 12:15:36.373745: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-17 12:15:36.373785: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0 1 2 3 
2018-06-17 12:15:36.373798: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N Y Y Y 
2018-06-17 12:15:36.373804: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 1:   Y N Y Y 
2018-06-17 12:15:36.373808: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 2:   Y Y N Y 
2018-06-17 12:15:36.373814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 3:   Y Y Y N 
2018-06-17 12:15:36.374516: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5307 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1)
2018-06-17 12:15:36.444426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5582 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1)
2018-06-17 12:15:36.506340: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 5582 MB memory) -> physical GPU (device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-06-17 12:15:36.614736: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 5582 MB memory) -> physical GPU (device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1
2018-06-17 12:15:36.689345: I tensorflow/core/common_runtime/direct_session.cc:284] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:06:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:09:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:0a:00.0, compute capability: 6.1

安装Keras2.1.x

Keras的后端支持TensorFlow, Theano, CNTK,在安装完TensorFlow GPU版本之后,继续安装Keras非常简单,在TensorFlow的虚拟环境中,直接"pip install keras"即可,安装的版本是Keras2.1.6:

Installing collected packages: h5py, scipy, pyyaml, keras
Successfully installed h5py-2.7.1 keras-2.1.6 pyyaml-3.12 scipy-1.1.0

测试一下:

Python 2.7.12 (default, Dec  4 2017, 14:50:18) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
Using TensorFlow backend.

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:

本文链接地址:从零开始搭建深度学习服务器: 1080TI四卡并行(Ubuntu16.04+CUDA9.2+cuDNN7.1+TensorFlow+Keras) /?p=10334

推荐系统中的矩阵分解技术(达观数据 周颢钰)

Deep Learning Specialization on Coursera

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

网络中的信息量呈现指数式增长,随之带来了信息过载问题。推荐系统是大数据时代下应运而生的产物,目前已广泛应用于电商、社交、短视频等领域。本文将针对推荐系统中基于隐语义模型的矩阵分解技术来进行讨论。

NO.1
评分矩阵、奇异值分解与Funk-SVD

对于一个推荐系统,其用户数据可以整理成一个user-item矩阵。矩阵中每一行代表一个用户,而每一列则代表一个物品。若用户对物品有过评分,则矩阵中处在用户对应的行与物品对应的列交叉的位置表示用户对物品的评分值。这个user-item矩阵被称为评分矩阵。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图即为评分矩阵的一个例子。其中的?表示用户还没有对物品做出评价,而推荐系统最终的目标就是对于任意一个用户,预测出所有未评分物品的分值,并按分值从高到低的顺序将对应的物品推荐给用户。

说到矩阵分解技术,首先想到的往往是特征值分解(eigendecomposition)奇异值分解(Singular value decomposition,SVD)

对于特征值分解,由于其只能作用于方阵,因此并不适合分解评分矩阵这个场景。

而对于奇异值分解,其具体描述为:假设矩阵M是一个m*n的矩阵,则一定存在一个分解技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,其中U是m*m的正交矩阵,V是n*n的正交矩阵,Σ是m*n的对角阵,可以说是完美契合分解评分矩阵这个需求。其中,对角阵Σ还有一个特殊的性质,它的所有元素都非负,且依次减小。这个减小也特别快,在很多情况下,前10%的和就占了全部元素之和的99%以上,这就是说我们可以使用最大的k个值和对应大小的U、V矩阵来近似描述原始的评分矩阵。

于是我们马上能得到一个解决方案:对原始评分矩阵M做奇异值分解,得到U、V及Σ,取Σ中较大的k类作为隐含特征,则此时M(m*n)被分解成U(m*k) Σ(k*k)V(k*n),接下来就可以直接使用矩阵乘法来完成对原始评分矩阵的填充。但是实际上,这种方法存在一个致命的缺陷——奇异值分解要求矩阵是稠密的。也就是说SVD不允许待分解矩阵中存在空白的部分,这一开始就与我们的问题所冲突了。

当然,也可以想办法对缺失值先进行简单的填充,例如使用全局平均值。然而,即使有了补全策略,在实际应用场景下,user和item的数目往往是成千上万的,面对这样的规模传统SVD算法O(n^3)的时间复杂度显然是吃不消的。因此,直接使用传统SVD算法并不是一个好的选择。(达观数据周颢钰)

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

既然传统SVD在实际应用场景中面临着稀疏性问题和效率问题,那么有没有办法避开稀疏问题,同时提高运算效率呢?

实际上早在06年,Simon Funk就提出了Funk-SVD算法,其主要思路是将原始评分矩阵M(m*n)分解成两个矩阵P(m*k)和Q(k*n),同时仅考察原始评分矩阵中有评分的项分解结果是否准确,而判别标准则是均方差。

即对于矩阵M(m*n),我们想办法将其分解为P(m*k)、Q(k*n),此时对于原始矩阵中有评分的位置MUI来说,其在分解后矩阵中对应的值就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

那么对于整个评分矩阵而言,总的损失就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

只要我们能想办法最小化上面的损失SSE,就能以最小的扰动完成对原始评分矩阵的分解,在这之后只需要用计算M’ 的方式来完成对原始评分矩阵的填充即可。(达观数据 周颢钰)

这种方法被称之为隐语义模型(Latent factor model,LFM),其算法意义层面的解释为通过隐含特征(latent factor)将user兴趣与item特征联系起来。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

对于原始评分矩阵R,我们假定一共有三类隐含特征,于是将矩阵R(3*4)分解成用户特征矩阵P(3*3)与物品特征矩阵Q(3*4)。考察user1对item1的评分,可以认为user1对三类隐含特征class1、class2、class3的感兴趣程度分别为P11、P12、P13,而这三类隐含特征与item1相关程度则分别为Q11、Q21、Q31。

回到上面的式子

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

可以发现用户U对物品I最终的评分就是由各个隐含特征维度下U对I感兴趣程度的和,这里U对I的感兴趣程度则是由U对当前隐含特征的感兴趣程度乘上I与当前隐含特征相关程度来表示的。

于是,现在的问题就变成了如何求出使得SSE最小的矩阵P和Q

 

NO.2
随机梯度下降法

在求解上文中提到的这类无约束最优化问题时,梯度下降法(Gradient Descent)是最常采用的方法之一,其核心思想非常简单,沿梯度下降的方向逐步迭代。梯度是一个向量,表示的是一个函数在该点处沿梯度的方向变化最快,变化率最大,而梯度下降的方向就是指的负梯度方向。

根据梯度下降法的定义,其迭代最终必然会终止于一阶导数(对于多元函数来说则是一阶偏导数)为零的点,即驻点。对于可导函数来说,其极值点一定是驻点,而驻点并不一定是极值点,还可能是鞍点。另一方面,极值点也不一定是最值点。下面举几个简单的例子。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。从图中可以看出,函数唯一的驻点 (0,0)为其最小值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。其一阶导数为技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,从而可知其同样有唯一驻点(0,0)。从图中可以看出,函数并没有极值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。从图像中可以看出,函数一共有三个驻点,包括两个极小值点和一个极大值点,其中位于最左边的极小值点是函数的最小值点。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图为函数技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术。其中点 (0,0,0)为其若干个鞍点中的一个。

从上面几幅函数图像中可以看出梯度下降法在求解最小值时具有一定的局限性,用一句话概括就是,目标函数必须是凸函数。2018免费送彩金游戏凸函数的判定,对于一元函数来说,一般是求二阶导数,若其二阶导数非负,就称之为凸函数。对于多元函数来说判定方法类似,只是从判断一元函数的单个二阶导数是否非负,变成了判断所有变量的二阶偏导数构成的黑塞矩阵(Hessian Matrix)是否为半正定矩阵。判断一个矩阵是否半正定可以判断所有特征值是否非负,或者判断所有主子式是否非负。

回到上面funk-svd的最优化问题上来。经过一番紧张刺激的计算之后,可以很遗憾地发现,我们最终的目标函数是非凸的。这就意味着单纯使用梯度下降法可能会找到极大值、极小值或者鞍点。这三类点的稳定性按从小到大排列依次是极大值、鞍点、极小值,考虑实际运算中,浮点数运算都会有一定的误差,因此最终结果很大几率会落入极小值点,同时也有落入鞍点的概率。而对于极大值点,除非初始值就是极大值,否在几乎不可能到达极大值点。

为了从鞍点和极小值点中脱出,在梯度下降法的基础上衍生出了各式各样的改进算法,例如动态调整步长(即学习率),利用上一次结果的动量法,以及随机梯度下降法(Stochastic Gradient Descent, SGD)等等。实际上,这些优化算法在当前最火热的深度学习中也占据着一席之地,例如adagrad、RMSprop,Adam等等。而本文则将主要介绍一下随机梯度下降法。(达观数据 周颢钰)

随机梯度下降法主要是用来解决求和形式的优化问题,与上面需要优化的目标函数一致。其思想也很简单,既然对于求和式中每一项求梯度很麻烦,那么干脆就随机选其中一项计算梯度当作总的梯度来使用好了。

具体应用到上文中的目标函数

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

SSE是2018免费送彩金游戏P和Q的多元函数,当随机选定U和I之后,需要枚举所有的k,并且对技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,以及技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术求偏导数。整个式子中仅有技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术这一项与之相关,通过链式法则可知

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

在实际的运算中,为了P和Q中所有的值都能得到更新,一般是按照在线学习的方式选择评分矩阵中有分数的点对应的U、I来进行迭代。

值得一提的是,上面所说的各种优化都无法保证一定能找到最优解。有论文指出,单纯判断驻点是否是局部最优解就是一个NPC问题,但是也有论文指出SGD的解能大概率接近局部最优甚至全局最优。

另外,相比于利用了黑塞矩阵的牛顿迭代法,梯度下降法在方向上的选择也不是最优的。牛顿法相当于考虑了梯度的梯度,所以相对更快。而由于其线性逼近的特性,梯度下降法在极值点附近可能出现震荡,相比之下牛顿法就没有这个问题。

但是在实际应用中,计算黑塞矩阵的代价是非常大的,在这里梯度下降法的优势就凸显出来了。因此,牛顿法往往应用于一些较为简单的模型,如逻辑回归。而对于稍微复杂一些的模型,梯度下降法及其各种进化版本则更受青睐。(达观数据 周颢钰)

 

NO.3
基于Funk-SVD的改进算法

到这一步为止,我们已经能通过SGD找到一组分解方案了,然而对于填充矩阵的FunkSVD算法本身而言,目前这个形式是否过于简单了一些呢?

实际上,在Funk-SVD被提出之后,出现了一大批改进算法。本文将介绍其中某些经典的改进思路。

1

正则化

对于所有机器学习算法而言,过拟合一直是需要重视的一个问题,而加入正则化项则是防止过拟合的经典处理方法。对于上面的Funk-SVD算法而言,具体做法就是在损失函数后面加入一个L2正则项,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中,λ为正则化系数,而整个求解过程依然可以使用随机梯度下降来完成。

2

偏置

考察式子

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

可以发现这个式子表明用户U对物品 I 的评分全部是由U和I之间的联系带来的。然而实际上,有很多性质是用户或者物品所独有的。比如某个用户非常严苛,不论对什么物品给出的分数都很低,这仅仅与用户自身有关。

又比如某个物品非常精美,所有用户都会给出较高的分数,这也仅仅与物品自身有关。因此,只通过用户与物品之间的联系来预测评分是不合理的,同时也需要考虑到用户和物品自身的属性。于是,评分预测的公式也需要进行修正。不妨设整个评分矩阵的平均分为σ,用户U和物品I的偏置分别为技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,那么此时的评分计算方法就变成了

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

同时,误差E除了由于M‘计算方式带来的变化之外,也同样需要加入U和I偏置的正则项,因此最终的误差函数变成了

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

3

隐式反馈

对于实际的应用场景中,经常有这样一种情况:用户点击查看了某一个物品,但是最终没有给出评分。

实际上,对于用户点击查看物品这个行为,排除误操作的情况,在其余的情况下可以认为用户被物品的描述,例如贴图或者文字描述等所吸引。这些信息我们称之为隐式反馈。事实上,一个推荐系统中有明确评分的数据是很少的,这类隐式数据才占了大头。

可以发现,在我们上面的算法当中,并没有运用到这部分数据。于是对于评分的方法,我们可以在显式兴趣+偏置的基础上再添加隐式兴趣,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中N(U)表示为用户U提供了隐式反馈的物品的集合。这就是svd++算法。

此时的损失函数也同样需要加上隐式兴趣的正则项,即

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

4

对偶算法

在上面的svd++中,我们是基于用户角度来考虑问题的,很明显我们同样可以基于物品的角度来考虑问题。具体来说就是

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

其中 N(I)表示为物品I提供了隐式反馈的用户的集合。类似地,在损失函数中也需要加上隐式兴趣的正则项。

在实际运用中,可以将原始的svd++得到的结果与对偶算法得到的结果进行融合,使得预测更加准确。然而相比起物品的数目,用户的数目往往是要高出几个量级的,因此对偶算法在储存空间和运算时间的开销上都将远高于原始的svd++,如何在效率和准确度之间找到平衡也是一个需要思考的问题。(达观数据 周颢钰)

 

NO.4
请因子分解机

矩阵分解的思想除了直接应用在分解评分矩阵上之外,其思想也能用在其他地方,接下来介绍的因子分解机(Factorization Machine,FM)就是一个例子。

对于经典的逻辑回归算法,其sigmoid函数中的项实际上是一个线性回归

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

在这里我们认为各个特征之间是相互独立的,而事实上往往有些特征之间是相互关联、相互影响的。因此,就有必要想办法捕捉这些特征之间的相互影响。简单起见,先只捕捉二阶的关系,即特征之间两两之间的相互影响。具体反映到回归公式上,即为

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

具体来说就是使用 技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术来描述技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术,对于w而言,其中可学习的项就对应了评分矩阵中有分值的项,而其他由于数据稀疏导致难以学习的项就相当于评分矩阵中的未评分项。这样一来,不仅解决了数据稀疏性带来的二阶权重学习问题,同时对于参数规模,也从技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术级别降到了O(kn)级别。

 

NO.5
与DNN的结合

深度学习无疑是近几年来最热门的机器学习技术。注意到隐语义模型中,隐含特征与深度学习中的embedding实际上是一回事,那么是否有可能借助DNN来帮助我们完成矩阵分解的工作呢?

实际上,在YouTube的文章《Deep neural networks for YouTube recommendations》中,就已经有了相关技术的应用。

技术干货丨想写出人见人爱的推荐系统,先了解经典矩阵分解技术

上图是YouTube初排模型的图示。具体的流程为:首先通过nlp技术,如word2vec,预训练出所有物品的向量I表示;然后对于每一条用户对物品的点击,将用户的历史点击、历史搜索、地理位置信息等信息经过各自的embedding操作,拼接起来作为输入,经过MLP训练后得到用户的向量表示U;而最终则是通过 softmax 函数来校验U*I的结果是否准确。

相比于传统的矩阵分解算法,使用DNN能为模型带来非线性的部分,提高拟合能力。另一方面,还可以很方便地加入各式各样的特征,提高模型的准确度。(达观数据 周颢钰)

 

NO.6
矩阵分解的优缺点

矩阵分解有如下优点:

  1. 能将高维的矩阵映射成两个低维矩阵的乘积,很好地解决了数据稀疏的问题;

  2. 具体实现和求解都很简洁,预测的精度也比较好;

  3. 模型的可扩展性也非常优秀,其基本思想也能广泛运用于各种场景中。

相对的,矩阵分解的缺点则有:

  1. 可解释性很差,其隐空间中的维度无法与现实中的概念对应起来;

  2. 训练速度慢,不过可以通过离线训练来弥补这个缺点;

  3. 实际推荐场景中往往只关心topn结果的准确性,此时考察全局的均方差显然是不准确的。

NO.7
总结

矩阵分解作为推荐系统中的经典模型,已经经过了十几年的发展,时至今日依然被广泛应用于推荐系统当中,其基本思想更是在各式各样的模型中发挥出重要作用。但是对于推荐系统来说,仅仅有一个好的模型是远远不够的。影响推荐系统效果的因素非常之多。想要打造一个一流的推荐系统,除了一个强大的算法模型之外,更需要想方设法结合起具体业务,不断进行各种尝试、升级,方能取得最终的胜利。

 

参考文献

【1】Simon Funk, http://sifter.org/~simon/journal/20061211.html

【2】Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer42.8 (2009).

【3】Jahrer, Michael, and Andreas Töscher. "Collaborative filtering ensemble." Proceedings of the 2011 International Conference on KDD Cup 2011-Volume 18. JMLR. org, 2011.

【4】Rendle, Steffen. "Factorization machines." Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010.

【5】Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.

Andrew Ng 深度学习公开课系列第五门课程序列模型开课

Deep Learning Specialization on Coursera

Andrew Ng 深度学习课程系列第五门课程序列模型(Sequence Models)在1月的尾巴终于开课 ,在跳票了几次之后,这门和NLP比较相关的深度学习课程终于开课了。这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,目前终于完备,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting applications in speech recognition, music synthesis, chatbots, machine translation, natural language understanding, and many others. You will: - Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs. - Be able to apply sequence models to natural language problems, including text synthesis. - Be able to apply sequence models to audio applications, including speech recognition and music synthesis. This is the fifth and final course of the Deep Learning Specialization.

这门课程主要面向自然语言,语音和其他序列数据进行深度学习建模,将会学习递归神经网络,GRU,LSTM等内容,以及如何将其应用到语音识别,机器翻译,自然语言理解等任务中去。个人认为这是目前互联网上最适合入门深度学习的系列系列课程了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,希望最后这门RNN课程也不负众望。参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程亚美游AMG88整理

从零开始搭建深度学习服务器: 深度学习工具安装(Theano + MXNet)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

以下是相关深度学习工具包的安装,包括Theano, MXNet

4. Theano

Theano虽然官宣不在更新,但是它的价值依然很大,很多早期深度学习工具的底层依然依赖的是它。在Ubuntu下安装Theano有两种模式,一种是通过Conda安装,Theano的官方安装文档给得是这个方式;另外一种是pip安装模式,官方文档没有给出很好的描述,我参考了网上其他的文章,安装过程中遇到了几个小问题,不过顺利解决。首先安装相关的依赖:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git

这个时候可以先尝试用pip的方式安装Theano:

pip install Theano

测试时会遇到类似找不到pygpu模块的提示,而这个模块,是无法用pip安装的,必须通过Theano提供的libgpuarray编译,官方安装文档也给了专门的说明

git clone https://github.com/Theano/libgpuarray.gitcd libgpuarray/mkdir Buildcd Build/cmake .. -DCMAKE_BUILD_TYPE=Releasemakesudo make installcd ..sudo pip install Cython(如果提示cython没有安装需要先安装Cython)sudo python setup.py buildsudo python setup.py installsudo ldconfig

还有最后一步,配置文件

vim ~/.theanorc

[global]floatX=float32device=cuda[cuda]root=/usr/local/cuda[nvcc]flags=-D_FORCE_INLINES

然后可以试一下在ipython中导入Theano是否ok:

Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
Type "copyright", "credits" or "license" for more information.
 
IPython 5.1.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.
 
In [1]: import theano
Using cuDNN version 6021 on context None
Mapped name None to device cuda: GeForce GTX 1080 Ti (0000:05:00.0)

5. MXNet

MXNet的安装还是比较方便的,按照MXNet官方的安装指南,我是在Ubuntu17.04的环境下用virtualenv安装的:

Python2.x的安装方式如下:

如果没有安装python环境和virtualenv,可以先安装:
sudo apt-get update
sudo apt-get install -y python-dev python-virtualenv

然后用virtualenv生成MXNet的虚拟环境:
virtualenv --system-site-packages venv
source venv/bin/activate

要升级pip到最新版(不清楚是为什么):
pip install --upgrade pip

目前MXNet的最新版是1.0:
pip install mxnet-cu80==1.0.0

如果需要可视化训练过程,则可以选择安装graphviz:
sudo apt-get install graphviz
pip install graphviz

最后测试一下MXNet在GPU环境下是否生效:

Python 2.7.13 (default, Nov 23 2017, 15:37:09) 
[GCC 6.3.0 20170406] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/__init__.py", line 25, in <module>
    from . import engine
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/engine.py", line 23, in <module>
    from .base import _LIB, check_call
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/base.py", line 111, in <module>
    _LIB = _load_lib()
  File "/home/textminer/mxnet/venv/local/lib/python2.7/site-packages/mxnet/base.py", line 103, in _load_lib
    lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL)
  File "/usr/lib/python2.7/ctypes/__init__.py", line 362, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libgfortran.so.3: cannot open shared object file: No such file or directory

报了如上libgfortran.so.3的错误,google了一下,需要安装gfortran:

sudo apt-get install gfortran

再次测试,就没有问题了:

(venv) textminer@textminer:~/mxnet$ python
Python 2.7.13 (default, Nov 23 2017, 15:37:09) 
[GCC 6.3.0 20170406] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
>>> a = mx.nd.ones((2,3), mx.gpu())
>>> b = a * 2 + 1
>>> b.asnumpy()
array([[ 3.,  3.,  3.],
       [ 3.,  3.,  3.]], dtype=float32)

Python3.x下的安装基本上过程相同。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:

本文链接地址:从零开始搭建深度学习服务器: 深度学习工具安装(Theano + MXNet) /?p=10058

深度学习课程及深度学习公开课亚美游AMG88整理

Deep Learning Specialization on Coursera

这里整理一批深度学习课程或者深度学习相关公开课的亚美游AMG88,持续更新,仅供参考。

1. Andrew Ng (吴恩达) 深度学习专项课程 by Coursera and deeplearning.ai

这是 Andrew Ng 老师离开百度后推出的第一个深度学习项目(deeplearning.ai)的一个课程: Deep Learning Specialization ,课程口号是:Master Deep Learning, and Break into AI. 作为 Coursera 联合创始人 和 机器学习网红课程 "Machine Learning" 的授课者,Andrew Ng 老师引领了数百万同学进入了机器学习领域,而这门深度学习课程的口号也透露了他的野心:继续带领百万人进入深度学习的圣地。

作为 Andrew Ng 老师的粉丝,依然推荐这门课程作为深度学习入门课程首选,并且建议花费上 Coursera 上的课程,一方面可以做题,另外还有证书,最重要的是它的编程作业,是理解课程内容的关键点,仅仅看视频绝对是达不到这个效果的。参考:《Andrew Ng 深度学习课程小记》和《Andrew Ng (吴恩达) 深度学习课程小结》。

2. Geoffrey Hinton 大神的 面向机器学习的神经网络(Neural Networks for Machine Learning)

Geoffrey Hinton大神的这门深度学习课程 2012年在 Coursera 上开过一轮,之后一直沉寂,直到 Coursera 新课程平台上线,这门课程已开过多轮次,来自课程图谱网友的评论:

"Deep learning必修课"

"宗派大师+开拓者直接讲课,秒杀一切二流子"

这门深度学习课程相对上面 Andrew Ng深度学习课程有一定难道,但是没有编程作业,只有Quiz.

3. 牛津大学深度学习课程(2015): Deep learning at Oxford 2015

这门深度学习课程名字虽然是 "Machine Learning 2014-2015",不过主要聚焦在深度学习的内容上,可以作为一门很系统的机器学习深度学习课程:

Machine learning techniques enable us to automatically extract features from data so as to solve predictive tasks, such as speech recognition, object recognition, machine translation, question-answering, anomaly detection, medical diagnosis and prognosis, automatic algorithm configuration, personalisation, robot control, time series forecasting, and much more. Learning systems adapt so that they can solve new tasks, related to previously encountered tasks, more efficiently.

The course focuses on the exciting field of deep learning. By drawing inspiration from neuroscience and statistics, it introduces the basic background on neural networks, back propagation, Boltzmann machines, autoencoders, convolutional neural networks and recurrent neural networks. It illustrates how deep learning is impacting our understanding of intelligence and contributing to the practical design of intelligent machines.

视频Playlist:https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu

参考:“牛津大学Nando de Freitas主讲的机器学习课程,重点介绍深度学习,还请来Deepmind的Alex Graves和Karol Gregor客座报告,内容、讲解都属一流,强烈推荐! 云: http://t.cn/RA2vSNX

4. Udacity 深度学习(中/英)by Google

Udacity (优达学城)上由Google工程师主讲的免费深度学习课程,结合Google自己的深度学习工具 Tensorflow ,很不错:

机器学习是发展最快、最令人兴奋的领域之一,而深度学习则代表了机器学习中最前沿但也最有风险的一部分。在本课内容中,你将透彻理解深度学习的动机,并设计用于了解复杂和/或大量数据库的智能系统。

我们将教授你如何训练和优化基本神经网络、卷积神经网络和长短期记忆网络。你将通过项目和任务接触完整的机器学习系统 TensorFlow。你将学习解决一系列曾经以为非常具有挑战性的新问题,并在你用深度学习方法轻松解决这些问题的过程中更好地了解人工智能的复杂属性。

我们与 Google 的首席科学家兼 Google 智囊团技术经理 Vincent Vanhoucke 联合开发了本课内容。此课程提供中文版本。

5. Udacity 纳米基石学位项目:深度学习

Udacity的纳米基石学位项目,收费课程,不过据说更注重实战:

人工智能正颠覆式地改变着我们的世界,而背后推动这场进步的,正是深度学习技术。优达学城和硅谷技术明星一起,带来这门帮你系统性入门的课程。你将通过充满活力的硅谷课程内容、独家实战项目和专业代码审阅,快速掌握深度学习的基础知识和前沿应用。

你在实战项目中的每行代码都会获得专业审阅和反馈,还可以在同步学习小组中,接受学长、导师全程的辅导和督促

6. fast.ai 上的深度学习系列课程

fast.ai上提供了几门深度学习课程,课程标语很有意思:Making neural nets uncool again ,并且 Our courses (all are free and have no ads):

Deep Learning Part 1: Practical Deep Learning for Coders
Why we created the course
What we cover in the course
Deep Learning Part 2: Cutting Edge Deep Learning for Coders
Computational Linear Algebra: Online textbook and Videos
Providing a Good Education in Deep Learning—our teaching philosophy
A Unique Path to Deep Learning Expertise—our teaching approach

7. 台大李宏毅老师深度学习课程:Machine Learning and having it Deep and Structured

难得的免费中文深度学习课程:

课程主页:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html
课程视频Playlist: https://www.youtube.com/playlist?list=PLJV_el3uVTsPMxPbjeX7PicgWbY7F8wW9
B站搬运深度学习课程视频: https://www.bilibili.com/video/av9770302/

8. 台大陈缊侬老师深度学习应用课程:Applied Deep Learning / Machine Learning and Having It Deep and Structured

据说是美女老师,这门课程16年秋季开过一次,不过没有视频,最新的这期是17年秋季课程,刚刚开课,Youtube上正在陆续放出课程视频:

16年课程主页,有Slides等相关资料:https://www.csie.ntu.edu.tw/~yvchen/f105-adl/index.html
17年课程主页,资料正在陆续放出:https://www.csie.ntu.edu.tw/~yvchen/f106-adl/
Youtube视频,目前没有playlist,可以关注其官方号放出的视频:https://www.youtube.com/channel/UCyB2RBqKbxDPGCs1PokeUiA/videos

9. Yann Lecun 深度学习公开课

"Yann Lecun 在 2016 年初于法兰西学院开课,这是其中2018免费送彩金游戏深度学习的 8 堂课。当时是用法语授课,后来加入了英文字幕。
作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。"

10. 2016 年蒙特利尔深度学习暑期班

推荐理由:看看嘉宾阵容吧,Yoshua Bengio 教授循环神经网络,Surya Ganguli 教授理论神经科学与深度学习理论,Sumit Chopra 教授 reasoning summit 和 attention,Jeff Dean 讲解 TensorFlow 大规模机器学习,Ruslan Salakhutdinov 讲解学习深度生成式模型,Ryan Olson 讲解深度学习的 GPU 编程,等等。

11. 斯坦福大学深度学习应用课程:CS231n: Convolutional Neural Networks for Visual Recognition

这门面向计算机视觉的深度学习课程由Fei-Fei Li教授掌舵,内容面向斯坦福大学学生,货真价实,评价颇高:

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge.

12. 斯坦福大学深度学习应用课程: Natural Language Processing with Deep Learning

这门课程由NLP领域的大牛 Chris Manning 和 Richard Socher 执掌,绝对是学习深度学习自然语言处理的不二法门。

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models behind NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this winter quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a thorough introduction to cutting-edge research in deep learning applied to NLP. On the model side we will cover word vector representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convolutional neural networks as well as some recent models involving a memory component. Through lectures and programming assignments students will learn the necessary engineering tricks for making neural networks work on practical problems.

这门课程融合了两位授课者之前在斯坦福大学的授课课程,分别是自然语言处理课程 cs224n (Natural Language Processing)和面向自然语言处理的深度学习课程 cs224d (Deep Learning for Natural Language Processing).

13. 斯坦福大学深度学习课程: CS 20SI: Tensorflow for Deep Learning Research

准确的说,这门课程主要是针对深度学习工具Tensorflow的:

Tensorflow is a powerful open-source software library for machine learning developed by researchers at Google Brain. It has many pre-built functions to ease the task of building different neural networks. Tensorflow allows distribution of computation across different computers, as well as multiple CPUs and GPUs within a single machine. TensorFlow provides a Python API, as well as a less documented C++ API. For this course, we will be using Python.

This course will cover the fundamentals and contemporary usage of the Tensorflow library for deep learning research. We aim to help students understand the graphical computational model of Tensorflow, explore the functions it has to offer, and learn how to build and structure models best suited for a deep learning project. Through the course, students will use Tensorflow to build models of different complexity, from simple linear/logistic regression to convolutional neural network and recurrent neural networks with LSTM to solve tasks such as word embeddings, translation, optical character recognition. Students will also learn best practices to structure a model and manage research experiments.

14. 牛津大学 & DeepMind 联合的面向NLP的深度学习应用课程: Deep Learning for Natural Language Processing: 2016-2017

课程主页:https://www.cs.ox.ac.uk/teaching/courses/2016-2017/dl/

github课程项目页面:https://github.com/oxford-cs-deepnlp-2017/

课程视频Playlist: https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm

B站搬运视频: https://www.bilibili.com/video/av9817911/

15. 卡耐基梅隆大学(CMU)深度学习应用课程:CMU CS 11-747, Fall 2017 Neural Networks for NLP

课程主页:http://phontron.com/class/nn4nlp2017/

课程视频Playlist: https://www.youtube.com/watch?v=Sss2EA4hhBQ&list=PL8PYTP1V4I8ABXzdqtOpB_eqBlVAz_xPT

16. MIT组织的一个为期一周的深度学习课程: 6.S191: Introduction to Deep Learning http://introtodeeplearning.com/

17. 奈良先端科学技術大学院大学(NAIST) 2014年推出的一个深度学习短期课程(英文授课):Deep Learning and Neural Networks

18. Deep Learning course: lecture slides and lab notebooks

欢迎大家推荐其他没有覆盖到的深度学习课程。

注:本文首发“课程图谱博客”:http://blog.coursegraph.com ,同步发布到这里,原文链接地址:http://blog.coursegraph.com/深度学习课程亚美游AMG88整理,转载请注明出处。

从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

以下是相关深度学习工具包的安装,包括Tensorflow, PyTorch, Torch等:

1. TensorFlow:

首先安装libcupti-dev

sudo apt-get install libcupti-dev

然后用 virtualenv 方式安装 Tensorflow(当前是1.4版本)

sudo apt-get install python-pip python-dev python-virtualenv mkdir tensorflowcd tensorflowvirtualenv --system-site-packages venvsource venv/bin/activatepip install --upgrade tensorflow-gpu

测试GPU:

Python 2.7.12 (default, Nov 19 2016, 06:48:10) [GCC 5.4.0 20160609] on linux2Type "help", "copyright", "credits" or "license" for more information.>>> import tensorflow as tf>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))...2017-10-24 20:37:24.290049: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties: name: GeForce GTX 1080 Timajor: 6 minor: 1 memoryClockRate (GHz) 1.6575pciBusID 0000:01:00.0Total memory: 10.91GiBFree memory: 10.52GiB...2017-10-24 20:37:24.387363: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 1 with properties: name: GeForce GTX 1080 Timajor: 6 minor: 1 memoryClockRate (GHz) 1.6575pciBusID 0000:02:00.0Total memory: 10.91GiBFree memory: 10.76GiB2017-10-24 20:37:24.388168: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1 2017-10-24 20:37:24.388176: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0:   Y Y 2017-10-24 20:37:24.388179: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1:   Y Y 2017-10-24 20:37:24.388186: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)2017-10-24 20:37:24.388189: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0)Device mapping:/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.02017-10-24 20:37:24.449867: I tensorflow/core/common_runtime/direct_session.cc:300] Device mapping:/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0>>> 

2. PyTorch:

首先在PyTorch的官网下载对应的pip安装文件:

然后用virtualenv的方式安装,非常方便:

mkdir pytorchcd pytorch/virtualenv venvsource venv/bin/activatepip install /path/to/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl pip install torchvision 

3. Torch

首先按照Torch官方的方法进行安装:http://torch.ch/docs/getting-started.html

git clone https://github.com/torch/distro.git ~/torch --recursivecd ~/torch; bash install-deps;./install.sh

如无意外,可以顺利安装,如果遇到了如下两个问题,可按下述方法修改:

1) 执行./install.sh时出现Moses>=1.错误

Missing dependencies for nn:moses >= 1.,有时候执行./install.sh时,会出现这个问题。

用这个方法解决:

sudo apt install luarockssudo luarocks install moses

2) install.sh 过程中提示“error -- unsupported GNU version! gcc versions later than 5 are not supported!”

ubuntu17.04自带gcc 6.x 版本,所以降级安装gcc 4.9版本解决问题:

sudo apt-get install g++-4.9  sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20  sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20 

成功执行安装脚本后后提示:

Do you want to automatically prepend the Torch install location
to PATH and LD_LIBRARY_PATH in your /home/yourpath/.bashrc? (yes/no)
[yes] >>>
yes

安装脚本会自动将torch的安装路径写入到 .bashrc里,然后输入 th试试:

如果你想用Lua5.2替代LuaJIT的方式安装Torch(If you want to install torch with Lua 5.2 instead of LuaJIT, simply run),可按如下方式安装:

git clone https://github.com/torch/distro.git torch --recursivecd torch# clean old torch installation./clean.sh

在 ~/.bashrec中设置lua的环境:
TORCH_LUA_VERSION=LUA52
并执行 source ~/.bashrc, 然后运行:

./install.sh

遇到第一个问题:

cmake: not found

安装cmake解决:
sudo apt-get install cmake

第二个问题:
readline.c:8:31: fatal error: readline/readline.h: 没有那个文件或目录

安装libreadine-dev解决:
sudo apt-get install libreadline-dev

第三个问题:安装过程依然提示“error -- unsupported GNU version! gcc versions later than 5 are not supported!”

ubuntu17.04自带gcc 6.x 版本,所以降级安装gcc 4.9版本解决问题:

sudo apt-get install g++-4.9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20

安装完毕依然会提示:

Not updating your shell profile.
You might want to
add the following lines to your shell profile:

. /home/textminer/torch/torch/install/bin/torch-activate

在 ~/.profile 文件末尾加上这行 ". /home/textminer/torch/torch/install/bin/torch-activate " 并执行 source ~/.profile,然后输入 th试试。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:

本文链接地址:从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch) /?p=10008

从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN)

Deep Learning Specialization on Coursera

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

去年上半年配置了一台GTX1080深度学习主机:深度学习主机攒机小记,然后分别写了两篇深度学习环境配置的文章:深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow,得到了很多同学留言,不过这个一年多以前完成的深度学习环境配置方案显得有些落伍了。这一年里,深度学习领域继续高歌猛进,包括 Andrew Ng 也离开百度出来创业了,他的第一个项目是deeplearning.ai,和Coursera合作推出了一个深度学习专项课程系列: Andrew Ng 深度学习课程小记。另外GTX1080的升级版1080TI显卡的发售也刺激了深度学习服务器的配置升级,我也机缘巧合的配置了3台1080TI深度学习服务器:从零开始搭建深度学习服务器:硬件选择。同时深度学习工具的开发迭代速度也惊人,Theano在完成了自己的历史使命后选择了停止更新,以这样的方式了退出了深度学习的舞台,而 TensorFlow,Torch,Pytorch 等工具和周边也发展迅猛。因为一次偶然事件,我又一次为老机器重装了系统环境,并且选则了最新的cuda9, cudnn7.0等基础工具版本: 深度学习服务器环境配置: Ubuntu17.04+Nvidia GTX 1080+CUDA 9.0+cuDNN 7.0+TensorFlow 1.3。不过回过头来,发现这种源代码方式编译 TensorFlow GPU 版本的方式在国内的网络环境下并不方便,而我更喜欢 CUDA8 + cuDNN6 + Tensorflow + Pytorch + Torch 的安装方案,简明扼要并且比较方便,于是在新的深度学习主机里我分别在Ubunu17.04和Ubuntu16.04的系统环境下配置了这样的深度学习服务器环境,下面就是相关的安装记录,希望这能成为一份简单的深度学习服务器环境配置指南。

1. 安装Ubuntu系统: Ubuntu16.04 或者 Ubuntu17.04

从Ubuntu官方直接下载Ubuntu镜像(Ubuntu16.04或者Ubuntu17.04,采用的是desktop amd64版本),用U盘和Ubuntu镜像制作安装盘。在MAC下制作 Ubuntu USB 安装盘的方法可参考: 在MAC下使用ISO制作Linux的安装USB盘,之后通过Bios引导U盘启动安装Ubuntu系统。如果安装的时候出现类似黑屏或者类似 "nouveau ... fifo ..."之类的报错信息,重启电脑,进入安装界面时候长按e,进入图形界面,按F6,选择 nomodeset 或者手动添加,进行Ubuntu系统的安装。参考《深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0》。

2. Source源和Pip源设置:

系统安装完毕后建议设置一下source源和pip源,这样可以加速安装相关的工具包。

cd /etc/apt/sudo cp sources.list sources.list.baksudo vi sources.list

对于Ubuntu16.04,我用的是阿里云的源,把下面的这些源添加到source.list文件头部:

deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-propertiesdeb http://mirrors.aliyun.com/ubuntu/ xenial main restricteddeb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-propertiesdeb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricteddeb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-propertiesdeb http://mirrors.aliyun.com/ubuntu/ xenial universedeb http://mirrors.aliyun.com/ubuntu/ xenial-updates universedeb http://mirrors.aliyun.com/ubuntu/ xenial multiversedeb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiversedeb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiversedeb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-propertiesdeb http://archive.canonical.com/ubuntu xenial partnerdeb-src http://archive.canonical.com/ubuntu xenial partnerdeb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricteddeb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-propertiesdeb http://mirrors.aliyun.com/ubuntu/ xenial-security universedeb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

对于Ubuntu17.04,我使用的是网易的源:

deb http://mirrors.163.com/ubuntu/ zesty main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ zesty-security main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ zesty-updates main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ zesty-proposed main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ zesty-backports main restricted universe multiversedeb-src http://mirrors.163.com/ubuntu/ zesty main restricted universe multiversedeb-src http://mirrors.163.com/ubuntu/ zesty-security main restricted universe multiversedeb-src http://mirrors.163.com/ubuntu/ zesty-updates main restricted universe multiversedeb-src http://mirrors.163.com/ubuntu/ zesty-proposed main restricted universe multiversedeb-src http://mirrors.163.com/ubuntu/ zesty-backports main restricted universe multiverse

最后更新一下:

sudo apt-get update
sudo apt-get upgrade

另外一个事情是将pip源指向阿里云的源镜像:http://mirrors.aliyun.com/help/pypi,具体添加一个 ~/.config/pip/pip.conf 文件,设置为:

[global]trusted-host =  mirrors.aliyun.comindex-url = http://mirrors.aliyun.com/pypi/simple

或者清华的pip源,刚好安装的那两天清华的pip源抽风,所以就换阿里云的了。

3. 安装1080TI显卡驱动:

sudo apt-get purge nvidia*sudo add-apt-repository ppa:graphics-drivers/ppasudo apt-get update && sudo apt-get install nvidia-384 nvidia-settings

安装完毕后重启机器,运行 nvidia-smi,看看生效的显卡驱动:

4. 安装CUDA:

因为Tensorflow和Pytorch目前官方提供的PIP版本只支持CUDA8, 所以我选择了安装CUDA8.0。不过目前英文达官方网站的 CUDA-TOOLKIT页面默认提供的是CUDA9.0的下载,所以需要在英文达官方提供的另一个 CUDA Toolkit Archive 页面选择CUDA8,这个页面包含了CUDA所有的历史版本和当前的CUDA9.0版本。点击 CUDA Toolkit 8.0 GA2 (Feb 2017) 这个页面,选择"cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb" 和 "cuBLAS Patch Update to CUDA 8":

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.debsudo apt-get updatesudo apt-get install cuda

如果之前没有安装上述"cuBLAS Patch Update to CUDA 8",可以用如下方式安装更新:

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64.debsudo apt-get update  sudo apt-get upgrade cuda

在 ~/.bashrc 中设置环境变量:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}export CUDA_HOME=/usr/local/cuda

运行 source ~/.bashrc 使其生效

4. 安装cuDNN:

cuDNN7.0 虽然出来了,但是 CUDA8 的最佳拍档依然是cuDNN6.0,在NIVIDA开发者官网上,找到cudnn的下载页面: https://developer.nvidia.com/rdp/cudnn-download ,选择"Download cuDNN v6.0 (April 27, 2017), for CUDA 8.0" 中的 "cuDNN v6.0 Library for Linux":

下载后安装非常简单,就是解压然后拷贝到相应的系统CUDA路径下,注意最后一行拷贝时 "-d"不能少, 否则会提示.so不是symbol link:

tar -zxvf cudnn-8.0-linux-x64-v6.0.tgz sudo cp cuda/include/cudnn.h /usr/local/cuda/include/sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d

以上是安装均在Ubunt16.04和Ubuntu17.04环境下测试通过,最后鉴于最近一些相关文章评论有同学留言无法从官方下载CUDA和cuDNN,亲测可能与国内环境有关,我将cuda8.0, cuda9.0, cudnn6.0, cudnn7.0的相关工具包上传到了百度网盘,提供两个下载地址:

CUDA8.0 & CUDA9.0下载地址:链接: https://pan.baidu.com/s/1gfaS4lt 密码 ddji ,包括:

1) CUDA8.0 for Ubuntu16.04: cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
2) CUDA8.0 for Ubuntu16.04 更新: cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64
3) CUDA9.0 for Ubuntu16.04: cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
4) CUDA9.0 for Ubuntu17.04: cuda-repo-ubuntu1704-9-0-local_9.0.176-1_amd64

cuDNN6.0 & cuDNN7.0下载地址:链接: https://pan.baidu.com/s/1dIwHgOHah3LAbhoebfBSRw 提取码: yfy9

1) cudnn6.0 for CUDA8: cudnn-8.0-linux-x64-v6.0.tgz
2) cudnn7.0 for CUDA8: cudnn-8.0-linux-x64-v7.tgz
3) cudnn7.0 for CUDA9: cudnn-9.0-linux-x64-v7.tgz

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:

本文链接地址:从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN) /?p=9823

Andrew Ng 深度学习课程系列第四门课程卷积神经网络开课

Deep Learning Specialization on Coursera

Andrew Ng 深度学习课程系列第四门课程卷积神经网络(Convolutional Neural Networks)将于11月6日开课 ,不过课程资料已经放出,现在注册课程已经可以听课了 ,这门课程属于Coursera上的深度学习专项系列 ,这个系列有5门课,前三门已经开过好几轮,但是第4、第5门课程一直处于待定状态,新的一轮将于11月7号开始,感兴趣的同学可以关注:Deep Learning Specialization

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization.

个人认为这是目前互联网上最适合入门深度学习的课程系列了,Andrew Ng 老师善于讲课,另外用Python代码抽丝剥茧扣作业,课程学起来非常舒服,参考我之前写得两篇小结:

Andrew Ng 深度学习课程小记

Andrew Ng (吴恩达) 深度学习课程小结

额外推荐: 深度学习课程亚美游AMG88整理